Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Summary Literature (26)
Literature for DOID 0080014: chromosomal disease


Xenbase Articles :
( Denotes literature images)
A dominant-negative form of the E3 ubiquitin ligase Cullin-1 disrupts the correct allocation of cell fate in the neural crest lineage., Voigt J,Papalopulu N, Development. February 1, 2006; 133(3):1477-9129.
XTbx1 is a transcriptional activator involved in head and pharyngeal arch development in Xenopus laevis., Ataliotis P,Ivins S,Mohun TJ,Scambler PJ, Dev Dyn. April 1, 2005; 232(4):1058-8388.
The target of the NSD family of histone lysine methyltransferases depends on the nature of the substrate., Li Y,Trojer P,Xu CF,Cheung P,Kuo A,Drury WJ,Qiao Q,Neubert TA,Xu RM,Gozani O,Reinberg D, J Biol Chem. December 4, 2009; 284(49):1083-351X.
Neurodevelopmental effects of chronic exposure to elevated levels of pro-inflammatory cytokines in a developing visual system., Lee RH,Mills EA,Schwartz N,Bell MR,Deeg KE,Ruthazer ES,Marsh-Armstrong N,Aizenman CD, Neural Dev. January 4, 2010; 5:1749-8104.
NMDA-mediated regulation of DSCAM dendritic local translation is lost in a mouse model of Down's syndrome., Alves-Sampaio A,Troca-Marín JA,Montesinos ML, J Neurosci. October 6, 2010; 30(40):1529-2401.
Paraxial T-box genes, Tbx6 and Tbx1, are required for cranial chondrogenesis and myogenesis., Tazumi S,Yabe S,Uchiyama H, Dev Biol. October 15, 2010; 346(2):1095-564X.
Williams Syndrome Transcription Factor is critical for neural crest cell function in Xenopus laevis., Barnett C,Yazgan O,Kuo HC,Malakar S,Thomas T,Fitzgerald A,Harbour W,Henry JJ,Krebs JE, Mech Dev. January 1, 2012; 129(9-12):1872-6356.
MCTP2 is a dosage-sensitive gene required for cardiac outflow tract development., Lalani SR,Ware SM,Wang X,Zapata G,Tian Q,Franco LM,Jiang Z,Jiang Z,Bucasas K,Scott DA,Campeau PM,Hanchard N,Umaña L,Cast A,Patel A,Cheung SW,McBride KL,Bray M,Craig Chinault A,Boggs BA,Huang M,Baker MR,Hamilton S,Towbin J,Jefferies JL,Fernbach SD,Potocki L,Belmont JW, Hum Mol Genet. November 1, 2013; 22(21):1460-2083.
Retinoic acid induced-1 (Rai1) regulates craniofacial and brain development in Xenopus., Tahir R,Kennedy A,Elsea SH,Dickinson AJ, Mech Dev. August 1, 2014; 133:1872-6356.
Down syndrome cell adhesion molecule (DSCAM) is important for early development in Xenopus tropicalis., Morales Diaz HD, Genesis. October 1, 2014; :1526-968X.
Expression of ribosomopathy genes during Xenopus tropicalis embryogenesis., Robson A,Owens ND,Baserga SJ,Khokha MK,Griffin JN, BMC Dev Biol. October 26, 2016; 16(1):1471-213X.
Modeling human craniofacial disorders in Xenopus., Dubey A,Saint-Jeannet JP, Curr Pathobiol Rep. March 1, 2017; 5(1):2167-485X.
Compound heterozygous alterations in intraflagellar transport protein CLUAP1 in a child with a novel Joubert and oral-facial-digital overlap syndrome., Johnston JJ,Lee C,Lee C,Lee C,Wentzensen IM,Parisi MA,Crenshaw MM,Sapp JC,Gross JM,Wallingford JB,Biesecker LG, Cold Spring Harb Mol Case Stud. July 1, 2017; 3(4):2373-2873.
Wolf-Hirschhorn Syndrome-Associated Genes Are Enriched in Motile Neural Crest Cells and Affect Craniofacial Development in Xenopus laevis., Mills A,Bearce E,Cella R,Kim SW,Selig M,Lee S,Lowery LA, Front Physiol. January 1, 2019; 10:1664-042X.
The Many Faces of Xenopus: Xenopus laevis as a Model System to Study Wolf-Hirschhorn Syndrome., Lasser M,Pratt B,Monahan C,Kim SW,Lowery LA, Front Physiol. January 1, 2019; 10:1664-042X.
NCBP2 modulates neurodevelopmental defects of the 3q29 deletion in Drosophila and Xenopus laevis models., Singh MD,Jensen M,Lasser M,Huber E,Yusuff T,Pizzo L,Lifschutz B,Desai I,Kubina A,Yennawar S,Kim S,Iyer J,Rincon-Limas DE,Lowery LA,Girirajan S, PLoS Genet. February 13, 2020; 16(2):1553-7404.
Novel truncating mutations in CTNND1 cause a dominant craniofacial and cardiac syndrome., Alharatani R,Ververi A,Beleza-Meireles A,Ji W,Mis E,Patterson QT,Griffin JN,Bhujel N,Chang CA,Dixit A,Konstantino M,Healy C,Hannan S,Neo N,Cash A,Li D,Bhoj E,Zackai EH,Cleaver R,Baralle D,McEntagart M,Newbury-Ecob R,Scott R,Hurst JA,Au PYB,Hosey MT,Khokha M,Marciano DK,Lakhani SA,Liu KJ,Liu KJ, Hum Mol Genet. July 21, 2020; 29(11):1460-2083.
Role of epigenetics and miRNAs in orofacial clefts., Garland MA,Sun B,Zhang S,Reynolds K,Ji Y,Zhou CJ, Birth Defects Res. November 1, 2020; 112(19):2472-1727.
MiR-9 and the Midbrain-Hindbrain Boundary: A Showcase for the Limited Functional Conservation and Regulatory Complexity of MicroRNAs., Alwin Prem Anand A,Alvarez-Bolado G,Wizenmann A, Front Cell Dev Biol. January 1, 2020; 8:2296-634X.
Editorial: Xenopus Models of Organogenesis and Disease., Griffin JN,Liu KJ,Liu KJ,Sempou E, Front Physiol. January 1, 2020; 11:1664-042X.
Aquatic models of human ciliary diseases., Corkins ME,Krneta-Stankic V,Kloc M,Miller RK, Genesis. February 1, 2021; 59(1-2):1526-968X.
Bioelectric signaling: Reprogrammable circuits underlying embryogenesis, regeneration, and cancer., Levin M, Cell. April 15, 2021; :1097-4172.
Modeling human congenital disorders with neural crest developmental defects using patient-derived induced pluripotent stem cells., Okuno H,Okano H, Regen Ther. August 24, 2021; 18:2352-3204.
Single-minded 2 is required for left-right asymmetric stomach morphogenesis., Wyatt BH,Amin NM,Bagley K,Wcisel DJ,Dush MK,Yoder JA,Nascone-Yoder NM, Development. September 1, 2021; 148(17):1477-9129.
Reduced Retinoic Acid Signaling During Gastrulation Induces Developmental Microcephaly., Gur M,Bendelac-Kapon L,Shabtai Y,Pillemer G,Fainsod A, Front Cell Dev Biol. January 1, 2022; 10:2296-634X.
Genome-wide analysis of copy-number variation in humans with cleft lip and/or cleft palate identifies COBLL1, RIC1, and ARHGEF38 as clefting genes., Lansdon LA,Dickinson A,Arlis S,Liu H,Hlas A,Hahn A,Bonde G,Long A,Standley J,Tyryshkina A,Wehby G,Lee NR,Daack-Hirsch S,Mohlke K,Girirajan S,Darbro BW,Cornell RA,Houston DW,Murray JC,Manak JR, Am J Hum Genet. January 5, 2023; 110(1):1537-6605.