Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-52667
BMC Dev Biol 2016 Oct 26;161:38. doi: 10.1186/s12861-016-0138-5.
Show Gene links Show Anatomy links

Expression of ribosomopathy genes during Xenopus tropicalis embryogenesis.

Robson A , Owens ND , Baserga SJ , Khokha MK , Griffin JN .


???displayArticle.abstract???
BACKGROUND: Because ribosomes are ubiquitously required for protein production, it was long assumed that any inherited defect in ribosome manufacture would be embryonically lethal. However, several human congenital diseases have been found to be associated with mutations in ribosome biogenesis factors. Surprisingly, despite the global requirement for ribosomes, these "ribosomopathies" are characterized by distinct and tissue specific phenotypes. The reasons for such tissue proclivity in ribosomopathies remain mysterious but may include differential expression of ribosome biogenesis factors in distinct tissues. METHODS: Here we use in situ hybridization of labeled antisense mRNA probes and ultra high temporal resolution RNA-Seq data to examine and compare expression of 13 disease associated ribosome biogenesis factors at six key stages in Xenopus tropicalis development. RESULTS: Rather than being ubiquitously expressed during development, mRNAs of all examined ribosome biogenesis factors were highly enriched in specific tissues, including the cranial neural crest and ventral blood islands. Interestingly, expression of ribosome biogenesis factors demonstrates clear differences in timing, transcript number and tissue localization. CONCLUSION: Ribosome biogenesis factor expression is more spatiotemporally regulated during embryonic development than previously expected and correlates closely with many of the common ribosomopathy phenotypes. Our findings provide information on the dynamic use of ribosome production machinery components during development and advance our understanding of their roles in disease.

???displayArticle.pubmedLink??? 27784267
???displayArticle.pmcLink??? PMC5081970
???displayArticle.link??? BMC Dev Biol
???displayArticle.grants??? [+]

Species referenced: Xenopus tropicalis
Genes referenced: rbm28 rpl15 rpl26 rpl35a rpl38 rps14 rps17 rps19 rps29 rps7 sbds tcof1 utp4

???displayArticle.disOnts??? Bowen-Conradi syndrome [+]
???displayArticle.omims??? DIAMOND-BLACKFAN ANEMIA 1; DBA1 [+]

???attribute.lit??? ???displayArticles.show???
References [+] :
Amsterdam, Identification of 315 genes essential for early zebrafish development. 2004, Pubmed