Images |
Sources |
Experiment + Assay |
Phenotypes |
Human Diseases |
|
Fig. S2 B
Azbazdar Y and De Robertis EM (2024)
|
Xla Wt + ctnnb1 MO
NF10.5 (in situ hybridization)
|
|
|
|
Fig S2 DEFG
Azbazdar Y and De Robertis EM (2024)
|
Xla Wt + ctnnb1 MO
NF11.5 (RT-PCR)
|
|
|
|
Fig.7.C
Gur M et al. (2022)
|
Xla Wt + aldh1a2 CRISPR
NF12 (RT-PCR)
|
|
|
|
Fig.7.B
Gur M et al. (2022)
|
Xla Wt + aldh1a3 CRISPR
NF10.25 (RT-PCR)
|
|
|
|
Fig.3.A-G
Gur M et al. (2022)
|
Xla Wt + DEAB
NF10.25 (RT-PCR)
|
|
|
|
Fig.3.H
Gur M et al. (2022)
|
Xla Wt + DEAB
NF10.25 (RT-PCR)
|
|
|
|
Fig.3.A-G
Gur M et al. (2022)
|
Xla Wt + Retinoic acid
NF10.25 (RT-PCR)
|
|
|
|
Fig. 5D, row2, col4
Chang LS et al. (2020)
|
Xtr Wt + Hsa.ZNRF3
NF 10.5 (in situ hybridization)
|
|
|
|
Fig. 5 supp1, C
Chang LS et al. (2020)
|
Xtr Wt + Hsa.ZNRF3
NF 10.5 (in situ hybridization)
|
|
|
|
Fig. 3A, row1, col3
Chang LS et al. (2020)
|
Xtr WT + ptprk MO
NF 10.5 (in situ hybridization)
|
|
|