Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-45598
Cell Mol Life Sci 2012 Nov 01;6922:3835-50. doi: 10.1007/s00018-012-1050-1.
Show Gene links Show Anatomy links

Evolution of the Cdk-activator Speedy/RINGO in vertebrates.

Chauhan S , Zheng X , Tan YY , Tay BH , Lim S , Venkatesh B , Kaldis P .


???displayArticle.abstract???
Successful completion of the cell cycle relies on the precise activation and inactivation of cyclin-dependent kinases (Cdks) whose activity is mainly regulated by binding to cyclins. Recently, a new family of Cdk regulators termed Speedy/RINGO has been discovered, which can bind and activate Cdks but shares no apparent amino acid sequence homology with cyclins. All Speedy proteins share a conserved domain of approximately 140 amino acids called "Speedy Box", which is essential for Cdk binding. Speedy/RINGO proteins display an important role in oocyte maturation in Xenopus. Interestingly, a common feature of all Speedy genes is their predominant expression in testis suggesting that meiotic functions may be the most important physiological feature of Speedy genes. Speedy homologs have been reported in mammals and can be traced back to the most primitive clade of chordates (Ciona intestinalis). Here, we investigated the evolution of the Speedy genes and have identified a number of new Speedy/RINGO proteins. Through extensive analysis of numerous species, we discovered diverse evolutionary histories: the number of Speedy genes varies considerably among species, with evidence of substantial gains and losses. Despite the interspecies variation, Speedy is conserved among most species examined. Our results provide a complete picture of the Speedy gene family and its evolution.

???displayArticle.pubmedLink??? 22763696
???displayArticle.link??? Cell Mol Life Sci


Species referenced: Xenopus laevis
Genes referenced: spdya

References [+] :
Al Sorkhy, The cyclin-dependent kinase activator, Spy1A, is targeted for degradation by the ubiquitin ligase NEDD4. 2009, Pubmed