Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

???searchArticles.header???



Filter by Date: Year(4-digits)   to 

???application.search.numResults???


Alphabetic Search:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

???manualAddArticle.find??? ???manualAddArticle.link.add???


???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6

( ???images.icon???)
Search Results

c21orf59/kurly Controls Both Cilia Motility and Polarization., Jaffe KM, Grimes DT, Schottenfeld-Roames J, Werner ME, Ku TS, Kim SK, Pelliccia JL, Morante NF, Mitchell BJ, Burdine RD., Cell Rep. March 1, 2016; 14 (8): 1841-9.                  


Basal bodies in Xenopus., Zhang S, Mitchell BJ., Cilia. February 3, 2016; 5 2.      


BATCH-GE: Batch analysis of Next-Generation Sequencing data for genome editing assessment., Boel A, Steyaert W, De Rocker N, Menten B, Callewaert B, De Paepe A, Coucke P, Willaert A., Sci Rep. January 22, 2016; 6 30330.      


Efficient genome editing of genes involved in neural crest development using the CRISPR/Cas9 system in Xenopus embryos., Liu Z, Cheng TT, Shi Z, Liu Z, Lei Y, Wang C, Shi W, Chen X, Qi X, Cai D, Feng B, Deng Y, Chen Y, Zhao H., Cell Biosci. January 21, 2016; 6 22.          


Gmnc Is a Master Regulator of the Multiciliated Cell Differentiation Program., Zhou F, Narasimhan V, Shboul M, Chong YL, Reversade B, Roy S., Curr Biol. December 21, 2015; 25 (24): 3267-73.                


Compartmentalized Toxoplasma EB1 bundles spindle microtubules to secure accurate chromosome segregation., Chen CT, Kelly M, Leon Jd, Nwagbara B, Ebbert P, Ferguson DJ, Lowery LA, Morrissette N, Gubbels MJ., Mol Biol Cell. December 15, 2015; 26 (25): 4562-76.                


CRISPR/Cas9: An inexpensive, efficient loss of function tool to screen human disease genes in Xenopus., Bhattacharya D, Marfo CA, Li D, Lane M, Khokha MK., Dev Biol. December 15, 2015; 408 (2): 196-204.            


Heritable CRISPR/Cas9-mediated targeted integration in Xenopus tropicalis., Shi Z, Wang F, Cui Y, Liu Z, Guo X, Zhang Y, Deng Y, Zhao H, Chen Y., FASEB J. December 1, 2015; 29 (12): 4914-23.


CRISPRscan: designing highly efficient sgRNAs for CRISPR-Cas9 targeting in vivo., Moreno-Mateos MA, Vejnar CE, Beaudoin JD, Fernandez JP, Mis EK, Khokha MK, Giraldez AJ., Nat Methods. October 1, 2015; 12 (10): 982-8.        


Efficient ligase 3-dependent microhomology-mediated end joining repair of DNA double-strand breaks in zebrafish embryos., He MD, Zhang FH, Wang HL, Wang HP, Zhu ZY, Sun YH., Mutat Res. October 1, 2015; 780 86-96.


Enzymatically Generated CRISPR Libraries for Genome Labeling and Screening., Lane AB, Strzelecka M, Ettinger A, Grenfell AW, Wittmann T, Heald R., Dev Cell. August 10, 2015; 34 (3): 373-8.        


Highly efficient gene knockout by injection of TALEN mRNAs into oocytes and host transfer in Xenopus laevis., Nakajima K, Yaoita Y., Biol Open. January 16, 2015; 4 (2): 180-5.        


Targeted gene disruption in Xenopus laevis using CRISPR/Cas9., Wang F, Shi Z, Cui Y, Guo X, Shi YB, Chen Y., Cell Biosci. January 1, 2015; 5 15.            


Microhomology-mediated end-joining-dependent integration of donor DNA in cells and animals using TALENs and CRISPR/Cas9., Nakade S, Tsubota T, Sakane Y, Kume S, Sakamoto N, Obara M, Daimon T, Sezutsu H, Yamamoto T, Sakuma T, Suzuki KT., Nat Commun. November 20, 2014; 5 5560.          


Highly efficient targeted mutagenesis in axolotl using Cas9 RNA-guided nuclease., Flowers GP, Timberlake AT, McLean KC, Monaghan JR, Crews CM., Development. May 1, 2014; 141 (10): 2165-71.


Engineering Xenopus embryos for phenotypic drug discovery screening., Schmitt SM, Gull M, Brändli AW., Adv Drug Deliv Rev. April 1, 2014; 69-70 225-46.


Gene targeting technologies in rats: Zinc finger nucleases, transcription activator-like effector nucleases, and clustered regularly interspaced short palindromic repeats., Mashimo T., Dev Growth Differ. January 1, 2014; 56 (1): 46-52.


Exploiting CRISPR/Cas systems for biotechnology., Sampson TR, Weiss DS., Bioessays. January 1, 2014; 36 (1): 34-8.


Cas9-based genome editing in Xenopus tropicalis., Nakayama T, Blitz IL, Fish MB, Odeleye AO, Manohar S, Cho KW, Grainger RM., Methods Enzymol. January 1, 2014; 546 355-75.


Simple and efficient CRISPR/Cas9-mediated targeted mutagenesis in Xenopus tropicalis., Nakayama T, Fish MB, Fisher M, Oomen-Hajagos J, Thomsen GH, Grainger RM., Genesis. December 1, 2013; 51 (12): 835-43.            


Biallelic genome modification in F(0) Xenopus tropicalis embryos using the CRISPR/Cas system., Blitz IL, Biesinger J, Xie X, Cho KW., Genesis. December 1, 2013; 51 (12): 827-34.      


Control of gene expression by CRISPR-Cas systems., Bikard D, Marraffini LA., F1000Prime Rep. November 1, 2013; 5 47.      


ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering., Gaj T, Gersbach CA, Barbas CF., Trends Biotechnol. July 1, 2013; 31 (7): 397-405.

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6