Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

???searchArticles.header???



Filter by Date: Year(4-digits)   to 

???application.search.numResults???


Alphabetic Search:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

???manualAddArticle.find??? ???manualAddArticle.link.add???


???pagination.result.count???

???pagination.result.page??? 1 2 3 4 5 6 7 8 9 10 11 ???pagination.result.next???

( ???images.icon???)
Search Results

Xenopus in revealing developmental toxicity and modeling human diseases., Gao J, Shen W., Environ Pollut. January 1, 2021; 268 (Pt B): 115809.


Xenopus: Experimental Access to Cardiovascular Development, Regeneration Discovery, and Cardiovascular Heart-Defect Modeling., Hoppler S, Conlon FL., Cold Spring Harb Perspect Biol. June 1, 2020; 12 (6):


Xvent-2 expression in regenerating Xenopus tails., Pshennikova ES, Voronina AS., Stem Cell Investig. July 20, 2020; 7 13.   


Xenopus Dusp6 modulates FGF signaling to precisely pattern pre-placodal ectoderm., Tsukano K, Yamamoto T, Watanabe T, Michiue T., Dev Biol. August 1, 2022; 488 81-90.   


Xenopus models suggest convergence of gene signatures on neurogenesis in autism., Brennand KJ, Talkowski ME., Neuron. March 3, 2021; 109 (5): 743-745.


Xenopus as a model system for studying pigmentation and pigmentary disorders., El Mir J, Nasrallah A, Thézé N, Cario M, Fayyad-Kazan H, Thiébaud P, Rezvani HR., Pigment Cell Melanoma Res. January 7, 2024; 38 (1): e13178.   


XLF acts as a flexible connector during non-homologous end joining., Carney SM, Moreno AT, Piatt SC, Cisneros-Aguirre M, Lopezcolorado FW, Stark JM, Loparo JJ., Elife. December 8, 2020; 9   


Xenopus Husbandry., Harland RM, L Sive H., Cold Spring Harb Protoc. January 3, 2023; 2023 (1): 19-21.


Xenopus embryos show a compensatory response following perturbation of the Notch signaling pathway., Solini GE, Pownall ME, Hillenbrand MJ, Tocheny CE, Paudel S, Halleran AD, Bianchi CH, Huyck RW, Saha MS., Dev Biol. April 15, 2020; 460 (2): 99-107.   


Xbra modulates the activity of linker region phosphorylated Smad1 during Xenopus development., Kumar S, Umair Z, Kumar V, Goutam RS, Park S, Lee U, Kim J., Sci Rep. April 18, 2024; 14 (1): 8922.   


Xenopus tropicalis osteoblast-specific open chromatin regions reveal promoters and enhancers involved in human skeletal phenotypes and shed light on early vertebrate evolution., Castillo H, Hanna P, Sachs LM, Buisine N, Godoy F, Gilbert C, Aguilera F, Muñoz D, Boisvert C, Debiais-Thibaud M, Wan J, Spicuglia S, Marcellini S., Cells Dev. September 29, 2024; 179 203924.


X-box-binding protein 1 is required for pancreatic development in Xenopus laevis., Yang J, Liu X, Yuan F, Liu J, Li D, Wei L, Wang X, Yuan L., Acta Biochim Biophys Sin (Shanghai). December 11, 2020; 52 (11): 1215-1226.   


Xenopus laevis neural stem progenitor cells exhibit a transient metabolic shift toward glycolysis during spinal cord regeneration., Slater PG, Domínguez-Romero ME, Campos G, Aravena V, Cavieres-Lepe J, Eisner V., Front Cell Dev Biol. January 29, 2025; 13 1529093.   


Xela DS2 and Xela VS2: Two novel skin epithelial-like cell lines from adult African clawed frog (Xenopus laevis) and their response to an extracellular viral dsRNA analogue., Bui-Marinos MP, Varga JFA, Vo NTK, Bols NC, Katzenback BA., Dev Comp Immunol. November 1, 2020; 112 103759.


Xenopus laevis as an infection model for human pathogenic bacteria., Kuriu A, Ishikawa K, Tsuchiya K, Furuta K, Kaito C., Infect Immun. May 1, 2025; e0012625.


Xenobots: Applications in Drug Discovery., Solanki N, Mahant S, Patel S, Patel M, Shah U, Patel A, Koria H, Patel A., Curr Pharm Biotechnol. January 1, 2022; 23 (14): 1691-1703.


X-ray micro-computed tomography of Xenopus tadpole reveals changes in brain ventricular morphology during telencephalon regeneration., Ishii R, Yoshida M, Suzuki N, Ogino H, Suzuki M., Dev Growth Differ. August 1, 2023; 65 (6): 300-310.   


Xenopus laevis il11ra.L is an experimentally proven interleukin-11 receptor component that is required for tadpole tail regeneration., Suzuki S, Sasaki K, Fukazawa T, Kubo T., Sci Rep. February 3, 2022; 12 (1): 1903.   


Xenopus Sox11 Partner Proteins and Functional Domains in Neurogenesis., Singleton KS, Silva-Rodriguez P, Cunningham DD, Silva EM., Genes (Basel). February 15, 2024; 15 (2):   


Xenopus to the rescue: A model to validate and characterize candidate ciliopathy genes., Rao VG, Kulkarni SS., Genesis. February 1, 2021; 59 (1-2): e23414.   


Xenopus GLP-1-based glycopeptides as dual glucagon-like peptide 1 receptor/glucagon receptor agonists with improved in vivo stability for treating diabetes and obesity., Li Q, Yang Q, Han J, Liu X, Fu J, Yin J., Chin J Nat Med. November 1, 2022; 20 (11): 863-872.


Xenopus laevis and human type 3 iodothyronine deiodinase enzyme cross-species sensitivity to inhibition by ToxCast chemicals., Mayasich SA, Korte JJ, Denny JS, Hartig PC, Olker JH, DeGoey P, O'Flanagan J, Degitz SJ, Hornung MW., Toxicol In Vitro. June 1, 2021; 73 105141.


Xenopus, an emerging model for studying pathologies of the neural crest., Medina-Cuadra L, Monsoro-Burq AH., Curr Top Dev Biol. January 1, 2021; 145 313-348.


Xenopus gpx3 Mediates Posterior Development by Regulating Cell Death during Embryogenesis., Ismail T, Kim Y, Chae S, Ryu HY, Lee DS, Kwon TK, Park TJ, Kwon T, Lee HS., Antioxidants (Basel). December 12, 2020; 9 (12):   


Xenopus laevis Oocyte Array Fluidic Device Integrated with Microelectrodes for A Compact Two-Electrode Voltage Clamping System., Misawa N, Tomida M, Murakami Y, Mitsuno H, Kanzaki R., Sensors (Basel). February 21, 2023; 23 (5):   


Xenopus: An in vivo model for studying skin response to ultraviolet B irradiation., El Mir J, Fedou S, Thézé N, Morice-Picard F, Cario M, Fayyad-Kazan H, Thiébaud P, Rezvani HR., Dev Growth Differ. May 1, 2023; 65 (4): 194-202.   


Xenopus Ssbp2 is required for embryonic pronephros morphogenesis and terminal differentiation., Cervino AS, Collodel MG, Lopez IA, Hochbaum D, Hukriede NA, Cirio MC., bioRxiv. April 16, 2023;


XPR1: a regulator of cellular phosphate homeostasis rather than a Pi exporter., Burns D, Berlinguer-Palmini R, Werner A., Pflugers Arch. March 20, 2024;   


Xenopus chip for single-egg trapping, in vitro fertilization, development, and tadpole escape., Nam SW, Chae JP, Kwon YH, Son MY, Bae JS, Park MJ., Biochem Biophys Res Commun. September 10, 2021; 569 29-34.   


Xenopus leads the way: Frogs as a pioneering model to understand the human brain., Exner CRT, Willsey HR., Genesis. February 1, 2021; 59 (1-2): e23405.   


Xenopus as a platform for discovery of genes relevant to human disease., Kostiuk V, Khokha MK., Curr Top Dev Biol. January 1, 2021; 145 277-312.


Xenopus neural tube closure: A vertebrate model linking planar cell polarity to actomyosin contractions., Matsuda M, Sokol SY., Curr Top Dev Biol. January 1, 2021; 145 41-60.


Xenopus laevis Egg Extract Preparation and Live Imaging Methods for Visualizing Dynamic Cytoplasmic Organization., Cheng X, Ferrell JE., J Vis Exp. June 6, 2021; (172):


Xenopus, a Model to Study Wound Healing and Regeneration: Experimental Approaches., Slater PG, Palacios M, Larraín J., Cold Spring Harb Protoc. August 2, 2021; 2021 (8):


Xenopus laevis tadpoles exposed to metamifop: Changes in growth, behavioral endpoints, neurotransmitters, antioxidant system and thyroid development., Liu R, Qin Y, Diao J, Zhang H., Ecotoxicol Environ Saf. September 1, 2021; 220 112417.   


Xenopus retinal ganglion cell axon extension is unaffected by 5-HT 1B/D receptor activation during visual system development., Basakis P, Khaderi A, Lom B., MicroPubl Biol. January 1, 2023; 2023   


Xenopus Explants and Transplants., Moody SA., Cold Spring Harb Protoc. November 1, 2022; 2022 (11): Pdb.top097337.


Xenopus Ssbp2 is required for embryonic pronephros morphogenesis and terminal differentiation., Cervino AS, Collodel MG, Lopez IA, Roa C, Hochbaum D, Hukriede NA, Cirio MC., Sci Rep. October 4, 2023; 13 (1): 16671.   


Xenopus Oocytes as a Powerful Cellular Model to Study Foreign Fully-Processed Membrane Proteins., Ivorra I, Alberola-Die A, Cobo R, González-Ros JM, Morales A., Membranes (Basel). October 11, 2022; 12 (10):   


Xenopus Tadpole Craniocardiac Imaging Using Optical Coherence Tomography., Deniz E, Mis EK, Lane M, Khokha MK., Cold Spring Harb Protoc. June 7, 2022; 2022 (5): Pdb.prot105676.


Xeredar: An open-source R-package for the statistical analysis of endocrine new approach methods (NAMs) using fish or amphibian eleutheroembryos., Spyridonov IM, Yan L, Szöcs E, Miranda AFP, Lange C, Tindall A, Du Pasquier D, Lemkine G, Weltje L, Habekost M, Thorbek P., Environ Toxicol Chem. March 1, 2025;   


Xenopus Deep Cell Aggregates: A 3D Tissue Model for Mesenchymal-to-Epithelial Transition., Kim HY, Davidson LA., Methods Mol Biol. January 1, 2021; 2179 275-287.


Xbp1 and Brachyury establish an evolutionarily conserved subcircuit of the notochord gene regulatory network., Wu Y, Devotta A, José-Edwards DS, Kugler JE, Negrón-Piñeiro LJ, Braslavskaya K, Addy J, Saint-Jeannet JP, Di Gregorio A., Elife. January 20, 2022; 11   


Xenopus cell-free extracts and their applications in cell biology study., Liu J, Zhang C., Biophys Rep. August 31, 2023; 9 (4): 195-205.   


Xenopus Transgenesis Using the pGateway System., Nazlamova L., Methods Mol Biol. January 1, 2023; 2633 97-109.


Xenopus laevis lack the critical sperm factor PLCζ., Bainbridge RE, Rosenbaum JC, Sau P, Carlson AE., bioRxiv. February 3, 2023;   


Xenopus epidermal and endodermal epithelia as models for mucociliary epithelial evolution, disease, and metaplasia., Walentek P., Genesis. February 1, 2021; 59 (1-2): e23406.   


Xenopus Oocytes: A Tool to Decipher Molecular Specificity of Insecticides towards Mammalian and Insect GABA-A Receptors., Bertaud A, Cens T, Mary R, Rousset M, Arel E, Thibaud JB, Vignes M, Ménard C, Dutertre S, Collet C, Charnet P., Membranes (Basel). April 19, 2022; 12 (5):


Xenopus laevis (Daudin, 1802) as a Model Organism for Bioscience: A Historic Review and Perspective., Carotenuto R, Pallotta MM, Tussellino M, Fogliano C., Biology (Basel). June 20, 2023; 12 (6):   


Xenbase: key features and resources of the Xenopus model organism knowledgebase., Fisher M, James-Zorn C, Ponferrada V, Bell AJ, Sundararaj N, Segerdell E, Chaturvedi P, Bayyari N, Chu S, Pells T, Lotay V, Agalakov S, Wang DZ, Arshinoff BI, Foley S, Karimi K, Vize PD, Zorn AM., Genetics. May 4, 2023; 224 (1):   

???pagination.result.page??? 1 2 3 4 5 6 7 8 9 10 11 ???pagination.result.next???