Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

???searchArticles.header???



Filter by Date: Year(4-digits)   to 

???application.search.numResults???


Alphabetic Search:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

???manualAddArticle.find??? ???manualAddArticle.link.add???


???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 ???pagination.result.next???

( ???images.icon???)
Search Results

Xenopus laevis actin-depolymerizing factor/cofilin: a phosphorylation-regulated protein essential for development., Abe H, Obinata T, Minamide LS, Bamburg JR., J Cell Biol. March 1, 1996; 132 (5): 871-85.   


Xklp2, a novel Xenopus centrosomal kinesin-like protein required for centrosome separation during mitosis., Boleti H, Karsenti E, Vernos I., Cell. January 12, 1996; 84 (1): 49-59.


Xom: a Xenopus homeobox gene that mediates the early effects of BMP-4., Ladher R, Mohun TJ, Smith JC, Snape AM., Development. August 1, 1996; 122 (8): 2385-94.   


Xenopus laevis: a model system for the study of embryonic retinoid metabolism. III. Isomerization and metabolism of all-trans-retinoic acid and 9-cis-retinoic acid and their dysmorphogenic effects in embryos during neurulation., Kraft JC, Juchau MR., Drug Metab Dispos. October 1, 1995; 23 (10): 1058-71.


Xenopus lamin B3 has a direct role in the assembly of a replication competent nucleus: evidence from cell-free egg extracts., Goldberg M, Jenkins H, Allen T, Whitfield WG, Hutchison CJ., J Cell Sci. November 1, 1995; 108 ( Pt 11) 3451-61.


Xenopus embryonic cell adhesion to fibronectin: position-specific activation of RGD/synergy site-dependent migratory behavior at gastrulation., Ramos JW, DeSimone DW., J Cell Biol. July 1, 1996; 134 (1): 227-40.


XCL100, an inducible nuclear MAP kinase phosphatase from Xenopus laevis: its role in MAP kinase inactivation in differentiated cells and its expression during early development., Lewis T, Groom LA, Sneddon AA, Smythe C, Keyse SM., J Cell Sci. August 1, 1995; 108 ( Pt 8) 2885-96.


XIPOU 2, a noggin-inducible gene, has direct neuralizing activity., Witta SE, Agarwal VR, Sato SM., Development. March 1, 1995; 121 (3): 721-30.   


Xenopus laevis egg jelly coats consist of small diffusible proteins bound to a complex system of structurally stable networks composed of high-molecular-weight glycoconjugates., Bonnell BS, Reinhart D, Chandler DE., Dev Biol. February 25, 1996; 174 (1): 32-42.


XFGF-9: a new fibroblast growth factor from Xenopus embryos., Song J, Slack JM., Dev Dyn. August 1, 1996; 206 (4): 427-36.


Xenopus cadherins: sorting out types and functions in embryogenesis., Kühl M, Wedlich D., Dev Dyn. October 1, 1996; 207 (2): 121-34.


XTcf-3 transcription factor mediates beta-catenin-induced axis formation in Xenopus embryos., Molenaar M, van de Wetering M, Oosterwegel M, Peterson-Maduro J, Godsave S, Korinek V, Roose J, Destrée O, Clevers H., Cell. August 9, 1996; 86 (3): 391-9.   


Xenopus oocytes express multiple receptors for LPA-like lipid mediators., Liliom K, Murakami-Murofushi K, Kobayashi S, Murofushi H, Tigyi G., Am J Physiol. March 1, 1996; 270 (3 Pt 1): C772-7.


Xenopus laevis oocytes contain endogenous large conductance Ca2(+)-activated K+ channels., Krause JD, Foster CD, Reinhart PH., Neuropharmacology. January 1, 1996; 35 (7): 1017-22.


Xenopus Gq alpha subunit activates the phosphatidylinositol pathway in Xenopus oocytes but does not consistently induce oocyte maturation., Guttridge KL, Smith LD, Miledi R., Proc Natl Acad Sci U S A. February 28, 1995; 92 (5): 1297-301.


Xenopus laevis tadpole limb regeneration in vivo and in vitro: thyroxine directly promotes blastemal cell proliferation and morphogenesis., La Mesa G, Bernardini S, Cannata SM, Filoni S., Rouxs Arch Dev Biol. March 1, 1995; 204 (4): 223-228.


Xenopus mothers against decapentaplegic is an embryonic ventralizing agent that acts downstream of the BMP-2/4 receptor., Thomsen GH., Development. August 1, 1996; 122 (8): 2359-66.   


Xenopus laevis ribosomal protein L22: full-length cDNA sequence and expression analysis., Rapanotti MC, Pucci B, Amaldi F, Loreni F., Gene. March 10, 1995; 154 (2): 199-203.


Xenopus poly (A) binding protein maternal RNA is localized during oogenesis and associated with large complexes in blastula., Schroeder KE, Yost HJ., Dev Genet. January 1, 1996; 19 (3): 268-76.   


Xenopus poly(A) binding protein: functional domains in RNA binding and protein-protein interaction., Kühn U, Pieler T., J Mol Biol. February 16, 1996; 256 (1): 20-30.


Xenopus cyclin E, a nuclear phosphoprotein, accumulates when oocytes gain the ability to initiate DNA replication., Chevalier S, Couturier A, Chartrain I, Le Guellec R, Beckhelling C, Le Guellec K, Philippe M, Ford CC., J Cell Sci. June 1, 1996; 109 ( Pt 6) 1173-84.


Xenopus oocytes as a heterologous expression system for plant proteins., Theodoulou FL, Miller AJ., Mol Biotechnol. April 1, 1995; 3 (2): 101-15.


Xe-p9, a Xenopus Suc1/Cks homolog, has multiple essential roles in cell cycle control., Patra D, Dunphy WG., Genes Dev. June 15, 1996; 10 (12): 1503-15.


Xenopus PKN: cloning and sequencing of the cDNA and identification of conserved domains., Mukai H, Mori K, Takanaga H, Kitagawa M, Shibata H, Shimakawa M, Miyahara M, Ono Y., Biochim Biophys Acta. April 4, 1995; 1261 (2): 296-300.


Xenopus interspersed RNA families, Ocr and XR, bind DNA-binding proteins., Guttridge KL, Smith LD., Zygote. May 1, 1995; 3 (2): 111-22.


Xenopus oocyte maturation: cytoplasm alkalization is involved in germinal vesicle migration., Flament S, Browaeys E, Rodeau JL, Bertout M, Vilain JP., Int J Dev Biol. April 1, 1996; 40 (2): 471-6.


XRCC1 polypeptide interacts with DNA polymerase beta and possibly poly (ADP-ribose) polymerase, and DNA ligase III is a novel molecular 'nick-sensor' in vitro., Caldecott KW, Aoufouchi S, Johnson P, Shall S., Nucleic Acids Res. November 15, 1996; 24 (22): 4387-94.


Xenopus Xsal-1, a vertebrate homolog of the region specific homeotic gene spalt of Drosophila., Hollemann T, Schuh R, Pieler T, Stick R., Mech Dev. March 1, 1996; 55 (1): 19-32.   


Xenopus cyclin D2: cloning and expression in oocytes and during early development., Taïeb F, Jessus C., Biol Cell. January 1, 1996; 88 (3): 99-111.


Xenopus Mad proteins transduce distinct subsets of signals for the TGF beta superfamily., Graff JM, Bansal A, Melton DA., Cell. May 17, 1996; 85 (4): 479-87.


Xenopus connexin38 forms hemi-gap-junctional channels in the nonjunctional plasma membrane of Xenopus oocytes., Ebihara L., Biophys J. August 1, 1996; 71 (2): 742-8.


Xenopus laevis p53 protein: sequence-specific DNA binding, transcriptional regulation and oligomerization are evolutionarily conserved., Wang Y, Farmer G, Soussi T, Prives C., Oncogene. February 16, 1995; 10 (4): 779-84.


Xenopus egg lysates repair heat-generated DNA nicks with an average patch size of 36 nucleotides., Höfferer L, Winterhalter KH, Althaus FR., Nucleic Acids Res. April 25, 1995; 23 (8): 1396-7.


Xenopus nonmuscle myosin heavy chain isoforms have different subcellular localizations and enzymatic activities., Kelley CA, Sellers JR, Gard DL, Bui D, Adelstein RS, Baines IC., J Cell Biol. August 1, 1996; 134 (3): 675-87.


Xenopus chordin and Drosophila short gastrulation genes encode homologous proteins functioning in dorsal-ventral axis formation., François V, Bier E., Cell. January 13, 1995; 80 (1): 19-20.


XB/U-cadherin mRNA contains cytoplasmic polyadenylation elements and is polyadenylated during oocyte maturation in Xenopus laevis., Kühl M, Wedlich D., Biochim Biophys Acta. May 17, 1995; 1262 (1): 95-8.


xGCNF, a nuclear orphan receptor is expressed during neurulation in Xenopus laevis., Joos TO, David R, Dreyer C., Mech Dev. November 1, 1996; 60 (1): 45-57.   


XKCM1: a Xenopus kinesin-related protein that regulates microtubule dynamics during mitotic spindle assembly., Walczak CE, Mitchison TJ, Desai A., Cell. January 12, 1996; 84 (1): 37-47.


Xotx genes in the developing brain of Xenopus laevis., Kablar B, Vignali R, Menotti L, Pannese M, Andreazzoli M, Polo C, Giribaldi MG, Boncinelli E, Barsacchi G., Mech Dev. April 1, 1996; 55 (2): 145-58.


XIdx, a dominant negative regulator of bHLH function in early Xenopus embryos., Wilson R, Mohun T., Mech Dev. February 1, 1995; 49 (3): 211-22.   


Xenopus spinal neurons express Kv2 potassium channel transcripts during embryonic development., Burger C, Ribera AB., J Neurosci. February 15, 1996; 16 (4): 1412-21.   


Xwnt-8b: a maternally expressed Xenopus Wnt gene with a potential role in establishing the dorsoventral axis., Cui Y, Brown JD, Moon RT, Christian JL., Development. July 1, 1995; 121 (7): 2177-86.   


Xenopus sonic hedgehog as a potential morphogen during embryogenesis and thyroid hormone-dependent metamorphosis., Stolow MA, Shi YB., Nucleic Acids Res. July 11, 1995; 23 (13): 2555-62.   


XMCM7, a novel member of the Xenopus MCM family, interacts with XMCM3 and colocalizes with it throughout replication., Romanowski P, Madine MA, Laskey RA., Proc Natl Acad Sci U S A. September 17, 1996; 93 (19): 10189-94.


Xenopus F-cadherin, a novel member of the cadherin family of cell adhesion molecules, is expressed at boundaries in the neural tube., Espeseth A, Johnson E, Kintner C., Mol Cell Neurosci. June 1, 1995; 6 (3): 199-211.   


Xenopus lipovitellin 1 is a Zn(2+)- and Cd(2+)-binding protein., Sunderman FW, Antonijczuk K, Antonijczuk A, Grbac-Ivankovic S, Varghese AH, Korza G, Ozols J., Mol Reprod Dev. October 1, 1995; 42 (2): 180-7.


Xklp1, a chromosomal Xenopus kinesin-like protein essential for spindle organization and chromosome positioning., Vernos I, Raats J, Hirano T, Heasman J, Karsenti E, Wylie C., Cell. April 7, 1995; 81 (1): 117-27.


Xenopus laevis oocyte: using living cells to teach the theory of cell membrane potential., Schwab A, Kersting U, Oberleithner H, Silbernagl S., Am J Physiol. June 1, 1995; 268 (6 Pt 3): S26-31.


Xotch inhibits cell differentiation in the Xenopus retina., Dorsky RI, Rapaport DH, Harris WA., Neuron. March 1, 1995; 14 (3): 487-96.


X-ray absorption fine structure as a monitor of zinc coordination sites during oogenesis of Xenopus laevis., Auld DS, Falchuk KH, Zhang K, Montorzi M, Vallee BL., Proc Natl Acad Sci U S A. April 16, 1996; 93 (8): 3227-31.

???pagination.result.page??? ???pagination.result.prev??? 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 ???pagination.result.next???