Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Search Papers



Filter by Date: Year(4-digits)   to 

Results Per Page


Alphabetic Search:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Can't find an article you're looking for? Click here to manually add an article by PubMed ID.


Results 1 - 50 of 870 results

Page(s): 1 2 3 4 5 6 7 8 9 10 11 Next

( Denotes literature images)
Search Results

Xenopus as a model system for studying pigmentation and pigmentary disorders., El Mir J, Nasrallah A, Thézé N, Cario M, Fayyad-Kazan H, Thiébaud P, Rezvani HR., Pigment Cell Melanoma Res. June 7, 2024;


XPR1: a regulator of cellular phosphate homeostasis rather than a Pi exporter., Burns D, Berlinguer-Palmini R, Werner A., Pflugers Arch. March 20, 2024;                   


Xenopus Sox11 Partner Proteins and Functional Domains in Neurogenesis., Singleton KS, Silva-Rodriguez P, Cunningham DD, Silva EM., Genes (Basel). February 15, 2024; 15 (2):         


Xenopus Ssbp2 is required for embryonic pronephros morphogenesis and terminal differentiation., Cervino AS, Collodel MG, Lopez IA, Roa C, Hochbaum D, Hukriede NA, Cirio MC., Sci Rep. October 4, 2023; 13 (1): 16671.                                          


Xenopus cell-free extracts and their applications in cell biology study., Liu J, Zhang C., Biophys Rep. August 31, 2023; 9 (4): 195-205.


X-ray micro-computed tomography of Xenopus tadpole reveals changes in brain ventricular morphology during telencephalon regeneration., Ishii R, Yoshida M, Suzuki N, Ogino H, Suzuki M., Dev Growth Differ. August 1, 2023; 65 (6): 300-310.                    


Xenopus laevis (Daudin, 1802) as a Model Organism for Bioscience: A Historic Review and Perspective., Carotenuto R, Pallotta MM, Tussellino M, Fogliano C., Biology (Basel). June 20, 2023; 12 (6):


Xenbase: key features and resources of the Xenopus model organism knowledgebase., Fisher M, James-Zorn C, Ponferrada V, Bell AJ, Sundararaj N, Segerdell E, Chaturvedi P, Bayyari N, Chu S, Pells T, Lotay V, Agalakov S, Wang DZ, Arshinoff BI, Foley S, Karimi K, Vize PD, Zorn AM., Genetics. May 4, 2023; 224 (1):             


Xenopus: An in vivo model for studying skin response to ultraviolet B irradiation., El Mir J, Fedou S, Thézé N, Morice-Picard F, Cario M, Fayyad-Kazan H, Thiébaud P, Rezvani HR., Dev Growth Differ. May 1, 2023; 65 (4): 194-202.            


Xenopus Ssbp2 is required for embryonic pronephros morphogenesis and terminal differentiation., Cervino AS, Collodel MG, Lopez IA, Hochbaum D, Hukriede NA, Cirio MC., bioRxiv. April 16, 2023;


Xenopus laevis Oocyte Array Fluidic Device Integrated with Microelectrodes for A Compact Two-Electrode Voltage Clamping System., Misawa N, Tomida M, Murakami Y, Mitsuno H, Kanzaki R., Sensors (Basel). February 21, 2023; 23 (5):             


Xenopus laevis lack the critical sperm factor PLCζ., Bainbridge RE, Rosenbaum JC, Sau P, Carlson AE., bioRxiv. February 3, 2023;


Xenopus Husbandry., Harland RM, L Sive H., Cold Spring Harb Protoc. January 3, 2023; 2023 (1): 19-21.


Xenopus Transgenesis Using the pGateway System., Nazlamova L., Methods Mol Biol. January 1, 2023; 2633 97-109.


Xenopus retinal ganglion cell axon extension is unaffected by 5-HT 1B/D receptor activation during visual system development., Basakis P, Khaderi A, Lom B., MicroPubl Biol. January 1, 2023; 2023


Xenopus Explants and Transplants., Moody SA., Cold Spring Harb Protoc. November 1, 2022; 2022 (11): Pdb.top097337.


Xenopus GLP-1-based glycopeptides as dual glucagon-like peptide 1 receptor/glucagon receptor agonists with improved in vivo stability for treating diabetes and obesity., Li Q, Yang Q, Han J, Liu X, Fu J, Yin J., Chin J Nat Med. November 1, 2022; 20 (11): 863-872.


Xenopus Oocytes as a Powerful Cellular Model to Study Foreign Fully-Processed Membrane Proteins., Ivorra I, Alberola-Die A, Cobo R, González-Ros JM, Morales A., Membranes (Basel). October 11, 2022; 12 (10):             


Xenopus Dusp6 modulates FGF signaling to precisely pattern pre-placodal ectoderm., Tsukano K, Yamamoto T, Watanabe T, Michiue T., Dev Biol. August 1, 2022; 488 81-90.                          


Xenopus Tadpole Craniocardiac Imaging Using Optical Coherence Tomography., Deniz E, Mis EK, Lane M, Khokha MK., Cold Spring Harb Protoc. June 7, 2022; 2022 (5): Pdb.prot105676.


Xenogeneic Sertoli cells modulate immune response in an evolutionary distant mouse model through the production of interleukin-10 and PD-1 ligands expression., Vegrichtova M, Hajkova M, Porubska B, Vasek D, Krylov V, Tlapakova T, Krulova M., Xenotransplantation. May 1, 2022; 29 (3): e12742.


Xenopus Oocytes: A Tool to Decipher Molecular Specificity of Insecticides towards Mammalian and Insect GABA-A Receptors., Bertaud A, Cens T, Mary R, Rousset M, Arel E, Thibaud JB, Vignes M, Ménard C, Dutertre S, Collet C, Charnet P., Membranes (Basel). April 19, 2022; 12 (5):


Xenopus laevis il11ra.L is an experimentally proven interleukin-11 receptor component that is required for tadpole tail regeneration., Suzuki S, Sasaki K, Fukazawa T, Kubo T., Sci Rep. February 3, 2022; 12 (1): 1903.                      


Xbp1 and Brachyury establish an evolutionarily conserved subcircuit of the notochord gene regulatory network., Wu Y, Devotta A, José-Edwards DS, Kugler JE, Negrón-Piñeiro LJ, Braslavskaya K, Addy J, Saint-Jeannet JP, Di Gregorio A., Elife. January 20, 2022; 11                             


Xenobots: Applications in Drug Discovery., Solanki N, Mahant S, Patel S, Patel M, Shah U, Patel A, Koria H, Patel A., Curr Pharm Biotechnol. January 1, 2022; 23 (14): 1691-1703.


Xenopus chip for single-egg trapping, in vitro fertilization, development, and tadpole escape., Nam SW, Chae JP, Kwon YH, Son MY, Bae JS, Park MJ., Biochem Biophys Res Commun. September 10, 2021; 569 29-34.


Xenopus laevis tadpoles exposed to metamifop: Changes in growth, behavioral endpoints, neurotransmitters, antioxidant system and thyroid development., Liu R, Qin Y, Diao J, Zhang H., Ecotoxicol Environ Saf. September 1, 2021; 220 112417.                


Xenopus, a Model to Study Wound Healing and Regeneration: Experimental Approaches., Slater PG, Palacios M, Larraín J., Cold Spring Harb Protoc. August 2, 2021; 2021 (8):


Xenopus laevis Egg Extract Preparation and Live Imaging Methods for Visualizing Dynamic Cytoplasmic Organization., Cheng X, Ferrell JE., J Vis Exp. June 6, 2021; (172):


Xenopus laevis and human type 3 iodothyronine deiodinase enzyme cross-species sensitivity to inhibition by ToxCast chemicals., Mayasich SA, Korte JJ, Denny JS, Hartig PC, Olker JH, DeGoey P, O'Flanagan J, Degitz SJ, Hornung MW., Toxicol In Vitro. June 1, 2021; 73 105141.


Xenopus models suggest convergence of gene signatures on neurogenesis in autism., Brennand KJ, Talkowski ME., Neuron. March 3, 2021; 109 (5): 743-745.


Xenopus leads the way: Frogs as a pioneering model to understand the human brain., Exner CRT, Willsey HR., Genesis. February 1, 2021; 59 (1-2): e23405.          


Xenopus epidermal and endodermal epithelia as models for mucociliary epithelial evolution, disease, and metaplasia., Walentek P., Genesis. February 1, 2021; 59 (1-2): e23406.          


Xenopus to the rescue: A model to validate and characterize candidate ciliopathy genes., Rao VG, Kulkarni SS., Genesis. February 1, 2021; 59 (1-2): e23414.  


Xenopus Deep Cell Aggregates: A 3D Tissue Model for Mesenchymal-to-Epithelial Transition., Kim HY, Davidson LA., Methods Mol Biol. January 1, 2021; 2179 275-287.


Xenopus in revealing developmental toxicity and modeling human diseases., Gao J, Shen W., Environ Pollut. January 1, 2021; 268 (Pt B): 115809.


Xenopus neural tube closure: A vertebrate model linking planar cell polarity to actomyosin contractions., Matsuda M, Sokol SY., Curr Top Dev Biol. January 1, 2021; 145 41-60.


Xenopus, an emerging model for studying pathologies of the neural crest., Medina-Cuadra L, Monsoro-Burq AH., Curr Top Dev Biol. January 1, 2021; 145 313-348.


Xenopus as a platform for discovery of genes relevant to human disease., Kostiuk V, Khokha MK., Curr Top Dev Biol. January 1, 2021; 145 277-312.


Xenopus gpx3 Mediates Posterior Development by Regulating Cell Death during Embryogenesis., Ismail T, Kim Y, Chae S, Ryu HY, Lee DS, Kwon TK, Park TJ, Kwon T, Lee HS., Antioxidants (Basel). December 12, 2020; 9 (12):               


X-box-binding protein 1 is required for pancreatic development in Xenopus laevis., Yang J, Liu X, Yuan F, Liu J, Li D, Wei L, Wang X, Yuan L., Acta Biochim Biophys Sin (Shanghai). December 11, 2020; 52 (11): 1215-1226.                  


XLF acts as a flexible connector during non-homologous end joining., Carney SM, Moreno AT, Piatt SC, Cisneros-Aguirre M, Lopezcolorado FW, Stark JM, Loparo JJ., Elife. December 8, 2020; 9                   


Xela DS2 and Xela VS2: Two novel skin epithelial-like cell lines from adult African clawed frog (Xenopus laevis) and their response to an extracellular viral dsRNA analogue., Bui-Marinos MP, Varga JFA, Vo NTK, Bols NC, Katzenback BA., Dev Comp Immunol. November 1, 2020; 112 103759.


Xvent-2 expression in regenerating Xenopus tails., Pshennikova ES, Voronina AS., Stem Cell Investig. July 20, 2020; 7 13.  


Xenopus: Experimental Access to Cardiovascular Development, Regeneration Discovery, and Cardiovascular Heart-Defect Modeling., Hoppler S, Conlon FL., Cold Spring Harb Perspect Biol. June 1, 2020; 12 (6):


Xenopus embryos show a compensatory response following perturbation of the Notch signaling pathway., Solini GE, Pownall ME, Hillenbrand MJ, Tocheny CE, Paudel S, Halleran AD, Bianchi CH, Huyck RW, Saha MS., Dev Biol. April 15, 2020; 460 (2): 99-107.        


Xenbase: deep integration of GEO & SRA RNA-seq and ChIP-seq data in a model organism database., Fortriede JD, Pells TJ, Chu S, Chaturvedi P, Wang D, Fisher ME, James-Zorn C, Wang Y, Nenni MJ, Burns KA, Lotay VS, Ponferrada VG, Karimi K, Zorn AM, Vize PD., Nucleic Acids Res. January 8, 2020; 48 (D1): D776-D782.      


Xenopus Interferon Complex: Inscribing the Amphibiotic Adaption and Species-Specific Pathogenic Pressure in Vertebrate Evolution?, Tian Y, Jennings J, Gong Y, Sang Y., Cells. December 26, 2019; 9 (1):     


Xenopus laevis as a Bioindicator of Endocrine Disruptors in the Region of Central Chile., Rojas-Hucks S, Gutleb AC, González CM, Contal S, Mehennaoui K, Jacobs A, Witters HE, Pulgar J., Arch Environ Contam Toxicol. October 1, 2019; 77 (3): 390-408.


Xenopus fraseri: Mr. Fraser, where did your frog come from?, Evans BJ, Gansauge MT, Stanley EL, Furman BLS, Cauret CMS, Ofori-Boateng C, Gvoždík V, Streicher JW, Greenbaum E, Tinsley RC, Meyer M, Blackburn DC., PLoS One. September 3, 2019; 14 (9): e0220892.          

Page(s): 1 2 3 4 5 6 7 8 9 10 11 Next