Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-616
Pigment Cell Res 2006 Apr 01;192:136-45. doi: 10.1111/j.1600-0749.2005.00290.x.
Show Gene links Show Anatomy links

Studies of pigment transfer between Xenopus laevis melanophores and fibroblasts in vitro and in vivo.

Aspengren S , Hedberg D , Wallin M .


???displayArticle.abstract???
Frog melanophores rapidly change colour by dispersion or aggregation of melanosomes. A long-term colour change exists where melanosomes are released from melanophores and transferred to surrounding skin cells. No in vitro model for pigment transfer exists for lower vertebrates. Frog melanophores of different morphology exist both in epidermis where keratinocytes are present and in dermis where fibroblasts dominate. We have examined whether release and transfer of melanosomes can be studied in a melanophore-fibroblast co-culture, as no frog keratinocyte cell line exists. Xenopus laevis melanophores are normally cultured in conditioned medium from fibroblasts and fibroblast-derived factors may be important for melanophore morphology. Melanin was exocytosed as membrane-enclosed melanosomes in a process that was upregulated by alpha-melanocyte-stimulating hormone (alpha-MSH), and melanosomes where taken up by fibroblasts. Melanosome membrane-proteins seemed to be of importance, as the cluster-like uptake pattern of pigment granules was distinct from that of latex beads. In vivo results confirmed the ability of dermal fibroblasts to engulf melanosomes. Our results show that cultured frog melanophores can not only be used for studies of rapid colour change, but also as a model system for long-term colour changes and for studies of factors that affect pigmentation.

???displayArticle.pubmedLink??? 16524429
???displayArticle.link??? Pigment Cell Res


Species referenced: Xenopus laevis
Genes referenced: pomc