Xenbase is undergoing scheduled maintenance Wednesday, June 14 and Thursday, June 15, 2023. Xenbase will be unavailable on those days.

Click on this message to dismiss it.
Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-59347
Environ Toxicol Chem 2022 Dec 01;4112:2993-2998. doi: 10.1002/etc.5480.
Show Gene links Show Anatomy links

Active Pharmaceutical Ingredient Uptake by Zebrafish (Danio rerio) Oct2 (slc22a2) Transporter Expressed in Xenopus laevis Oocytes.

Chang ED , Owen SF , Hogstrand C , Bury NR .


Abstract
Uptake of active pharmaceutical ingredients (APIs) across the gill epithelium of fish is via either a passive or facilitated transport process, with the latter being more important at the lower concentrations more readily observed in the environment. The solute carrier (SLC) 22A family, which includes the organic cation transporter OCT2 (SLC22A2), has been shown in mammals to transport several endogenous chemicals and APIs. Zebrafish oct2 was expressed in Xenopus oocytes and the uptake of ranitidine, propranolol, and tetraethylammonium characterized. Uptake of ranitidine and propranolol was time- and concentration-dependent with a km and Vmax for ranitidine of 246 µM and 45 pmol/(oocyte × min) and for propranolol of 409 µM and 190 pmol/(oocyte × min), respectively. Uptake of tetraethylammonium (TEA) was inhibited by propranolol, amantadine, and cimetidine, known to be human OCT2 substrates, but not quinidine or ranitidine. At external media pH 7 and 8 propranolol uptake was 100-fold greater than at pH 6; pH did not affect ranitidine or TEA uptake. It is likely that cation uptake is driven by the electrochemical gradient across the oocyte. Uptake kinetics parameters, such as those derived in the present study, coupled with knowledge of transporter localization and abundance and API metabolism, can help derive pharmacokinetic models. Environ Toxicol Chem 2022;41:2993-2998. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.

PubMed ID: 36102855
PMC ID: PMC9827845
Article link: Environ Toxicol Chem
Grant support: [+]

Species referenced: Xenopus laevis