Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-58866
J Vis Exp 2022 Jan 21;179:. doi: 10.3791/63361.
Show Gene links Show Anatomy links

Recording Gap Junction Current from Xenopus Oocytes.

Shui Y , Wang ZW .


???displayArticle.abstract???
Heterologous expression of connexins and innexins in Xenopus oocytes is a powerful approach for studying the biophysical properties of gap junctions (GJs). However, this approach is technically challenging because it requires a differential voltage clamp of two opposed oocytes sharing a common ground. Although a small number of labs have succeeded in performing this technique, essentially all of them have used either homemade amplifiers or commercial amplifiers that were designed for single-oocyte recordings. It is often challenging for other labs to implement this technique. Although a high side current measuring mode has been incorporated into a commercial amplifier for dual oocyte voltage-clamp recordings, there had been no report for its application until our recent study. We have made the high side current measuring approach more practical and convenient by introducing several technical modifications, including the construction of a magnetically based recording platform that allows precise placement of oocytes and various electrodes, use of the bath solution as a conductor in voltage differential electrodes, adoption of a commercial low-leakage KCl electrode as the reference electrode, fabrication of current and voltage electrodes from thin-wall glass capillaries, and positioning of all the electrodes using magnetically based devices. The method described here allows convenient and robust recordings of junctional current (Ij) between two opposed Xenopus oocytes.

???displayArticle.pubmedLink??? 35129179
???displayArticle.link??? J Vis Exp


Species referenced: Xenopus laevis