Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-50581
Int J Dev Biol 2014 Jan 01;5810-12:799-809. doi: 10.1387/ijdb.140215ml.
Show Gene links Show Anatomy links

Left-right patterning in Xenopus conjoined twin embryos requires serotonin signaling and gap junctions.

Vandenberg LN , Blackiston DJ , Rea AC , Dore TM , Levin M .


???displayArticle.abstract???
A number of processes operating during the first cell cleavages enable the left-right (LR) axis to be consistently oriented during Xenopus laevis development. Prior work showed that secondary organizers induced in frog embryos after cleavage stages (i.e. conjoined twins arising from ectopic induced primary axes) correctly pattern their own LR axis only when a primary (early) organizer is also present. This instructive effect confirms the unique LR patterning functions that occur during early embryogenesis, but leaves open the question: which mechanisms that operate during early stages are also involved in the orientation of later-induced organizers? We sought to distinguish the two phases of LR patterning in secondary organizers (LR patterning of the primary twin and the later transfer of this information to the secondary twin) by perturbing only the latter process. Here, we used reagents that do not affect primary LR patterning at the time secondary organizers form to inhibit each of 4 mechanisms in the induced twin. Using pharmacological, molecular-genetic, and photo-chemical tools, we show that serotonergic and gap-junctional signaling, but not proton or potassium flows, are required for the secondary organizer to appropriately pattern its LR axis in a multicellular context. We also show that consistently-asymmetric gene expression begins prior to ciliary flow. Together, our data highlight the importance of physiological signaling in the propagation of cleavage-derived LR orientation to multicellular cell fields.

???displayArticle.pubmedLink??? 25896280
???displayArticle.pmcLink??? PMC10471180
???displayArticle.link??? Int J Dev Biol
???displayArticle.grants??? [+]

Species referenced: Xenopus laevis
Genes referenced: abracl actr6 adat2 adss2 agtrap aifm2 aifm3 ak6 aldh1a2 amd1 amdhd1 anapc13.2 anxa2 arg1 arpc3 atg4c atp12a atp23 atp2a2 atp6ap1 atp6v1f atp6v1g3 atxn3 banf1 bloc1s2 bloc1s5 blvrb bud31 c2hxorf38 c6h7orf57 ca10 ca2 capn9 capns2 carnmt1 cbfb ccar1 ccdc15 ccng1 ccnq cdh2 cdo1 cdx4 cebpz cep44 cep57l1 cep83 cetn2 cetn3 cetn4 cfap96 cfh cgnl1 chchd1 chmp5 chp1 chrd chst2 cldn1 cmbl cmc2 cnfn.1 coa5 col2a1 col9a2 col9a3 coq5 cox20 cox6c cpt2 crcp cst3 cth ctnna1 cwc27 cxcl12 cyb5a cyth2 dab2ip dand5 dap dbx1 dctn6 denr dgcr6 dguok dhcr7 dmrta1 dnaaf4 dnajc2 dnal1 dus4l dydc1 dync1li1 dynlt1 dynlt5 ebna1bp2 ech1 eif1ad eif3k eif4a2 elf2 emilin1 eps8l3 ercc4 ercc5 erp44 ess2 etaa1 etf1 exoc8 exosc9 fam174a fermt1 fibcd1 fkbp3 foxa4 foxd1 foxi2 fubp3 fundc1 fzd8 gadd45a gby gclm gcm1 gemin2 gfod2 ggnbp2 gipc2 gkap1 glod4 gmnn gng7 gnl2 gpank1 gsc gskip gxylt1 hccs hdac1 heatr6 hesx1 hmg20b hmgb1 hmgcl hmox2 hpgd hscb hypk ifrd1 ift25 ift57 ift74 ift80 igsf3 inpp1 itm2a katna1 kcp kctd18 KIAA1143 kif15 kin kiz klhdc4 kmo krr1 krt12.2 krt7 leprotl1 lig4 llph lrrc57 lsm5 lsm6 lsm7 ltv1 lyar lyrm4 lztfl1 map9 mccc1 mcm6.2 mcur1 mdm4 meaf6 med10 med20 med8 meig1 memo1 meox2 mespa mex3c mier1 mis12 mknk1 mmp28 mnd1 morn2 morn3 mpc1 mphosph10 mpo mrps17 mtif3 mvb12a mxd3 myo19 mzt1 nedd1 nelfe net1 nkiras1 nkx3-1 nme5 nme9 nmrk2 nodal nopchap1 not nr2c1 nt5c3a ntn1 nubp1 nuf2 nutf2 nxpe2 nxt2 ofd1 olfm4 orc6 otub2 pax3 pc.1 pcnp pdcd10 pdcd5 pde3b pipox pitx1 pnhd pole4 polr1e polr1f pou4f4 ppp3ca prag1 prdx1 prkar2b prkg2 psma4 psmc3ip psmd14 psme2 psph pus7 rabl2b ralbp1 ranbp1 rap1a rassf6 rbm7 rexo1 rgs2 riok1 riok2 rmi1 rpa2 rpl31 rpl39 rpp21 rps21 rps24 rps25 rps6kb1 rps7 rsl24d1 rsph3 rufy1 sacm1l saxo2 sbds scel scgn sdk2 senp1 senp6 senp7 septin10 septin11 shh shisa1 sia2 sil1 six3 ska2 slc25a30 slc26a4.3 slc2a1 smim12 snai2 snap29 snrnp25 snx2 sox11 spam1 spata6l spdya srp19 ssb ssu72 stmn1 stx7 stxbp3 sult1e1 sult6b1.4 syap1 sycp2l sytl2 sytl5 taf9b tbca tbrg1 tdgf1.2 tdrd3 tekt1 tekt2 terf1 thap1 them4 tifa timm10 timm13 timm44 tma16 tmem167b tmem30b tmem72 tnip1 tpm1 tpm4 tpmt triqk trmt10c tsfm tsga10 tspan8 twf1 txndc17 txndc9 uba5 ube2j1 ube3a unc93a.2 upf3b uqcr10 utp11 vamp2 vamp7 wdr43 wdr82 wdr89 xpa yeats4 zbtb14 zc3h15 zcrb1 znf585b znf593 znf622 zranb2


???attribute.lit??? ???displayArticles.show???
References [+] :
Adams, Inverse drug screens: a rapid and inexpensive method for implicating molecular targets. 2006, Pubmed