Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-45264
J Biol Chem 2011 Aug 12;28632:28041-8. doi: 10.1074/jbc.M111.233890.
Show Gene links Show Anatomy links

The styryl dye FM1-43 suppresses odorant responses in a subset of olfactory neurons by blocking cyclic nucleotide-gated (CNG) channels.

Breunig E , Kludt E , Czesnik D , Schild D .


???displayArticle.abstract???
Many olfactory receptor neurons use a cAMP-dependent transduction mechanism to transduce odorants into depolarizations. This signaling cascade is characterized by a sequence of two currents: a cation current through cyclic nucleotide-gated channels followed by a chloride current through calcium-activated chloride channels. To date, it is not possible to interfere with these generator channels under physiological conditions with potent and specific blockers. In this study we identified the styryl dye FM1-43 as a potent blocker of native olfactory cyclic nucleotide-gated channels. Furthermore, we characterized this substance to stain olfactory receptor neurons that are endowed with cAMP-dependent transduction. This allows optical differentiation and pharmacological interference with olfactory receptor neurons at the level of the signal transduction.

???displayArticle.pubmedLink??? 21646359
???displayArticle.pmcLink??? PMC3151049
???displayArticle.link??? J Biol Chem


Species referenced: Xenopus laevis
Genes referenced: camp
???displayArticle.antibodies??? FM1-43


???attribute.lit??? ???displayArticles.show???
References [+] :
Altner, Relationship between structure and function of antennal chemo-, hygro-, and thermoreceptive sensilla in Periplaneta americana. 1977, Pubmed