Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Kidney Int 2004 Jan 01;651:190-7. doi: 10.1111/j.1523-1755.2004.00363.x.
Show Gene links Show Anatomy links

A common sequence variation of the CLCNKB gene strongly activates ClC-Kb chloride channel activity.

Jeck N , Waldegger P , Doroszewicz J , Seyberth H , Waldegger S .

BACKGROUND: Tubular transepithelial reabsorption of chloride along the nephron is a major determinant of body salt and water homeostasis and blood pressure regulation. About 40% of the glomerulary filtered sodium chloride are reabsorbed in the distal nephrons. Vectorial transepithelial sodium chloride transport is critically dependent on the function of basolateral ClC-K type chloride channels there. Modulation of ClC-Kb chloride channel activity by polymorphic variations of the CLCNKB gene, thus, could form a molecular basis for salt sensitivity of blood pressure regulation. In this study we tested the effect of several polymorphic variants on ClC-Kb chloride channel activity. METHODS: After heterologous expression in Xenopus oocytes, ClC-Kb channel activity and surface expression in presence of the ClC-K beta subunit barttin were determined by two-electrode voltage-clamp analysis, immunofluorescence, and ClC-Kb surface enzyme-linked immunosorbent assay (ELISA). RESULTS: Chloride currents induced by the ClC-Kb variants L27R, G214A, I419V, T562M, and E578K were not significantly different from wild-type currents. The ClC-KbT481S variation, however, which showed a frequency of 20% in our control population, dramatically activated chloride conductance by a factor of 20. Activation of chloride currents was also observed after introducing homologous mutations in ClC-Ka and ClC-K1, but not in ClC-2 and ClC-5 chloride channels. ClC-Kb activation by the T481S mutation did not change intrinsic ion channel pore properties and did not require increased surface expression of ClC-KbT481S. CONCLUSION: Genetic heterogeneity of ClC-Kb chloride channels correlates with functional heterogeneity, which assigns ClC-Kb to a set of genes potentially relevant for polygenic salt-sensitivity of blood pressure regulation.

PubMed ID: 14675050
Article link: Kidney Int

Species referenced: Xenopus laevis
Genes referenced: bsnd clcn2 clcn5 clcnkb