Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-25971
Pflugers Arch 1990 Apr 01;4161-2:62-7.
Show Gene links Show Anatomy links

Regulation of Na+ channels in frog lung epithelium: a target tissue for aldosterone action.

Fischer H , Clauss W .


Abstract
Sodium transport across isolated lung tissue of the frog Xenopus laevis was measured in Ussing chambers under voltage-clamp conditions. Perfusing the lungs with NaCl-Ringer's solutions on both sides, a basal distinct amiloride-blockable Na+ current was present. Incubating the lungs with 1 mumol/l aldosterone from the pleural side raised the short circuit current after a 1-h latent period. Maximal values were reached after 4-5 h of aldosterone treatment, at which time the transepithelial Na+ current was more than doubled compared to the control. The stimulatory effect was totally inhibited when the aldosterone treatment was preceded by incubation of the lung tissues with spironolactone in 2000-fold excess. In the presence of amiloride (0.5-8 mumol/l) in the alveolar compartment, a Lorentzian noise component appeared in the power spectrum of the fluctuations in the short circuit current. This enabled the calculation of single Na+ channel current and Na+ channel density under both experimental conditions. Aldosterone stimulation did not change single Na+ channel current. On the other hand, the number of conducting Na+ channels increased in parallel with the transepithelial Na+ transport. This suggests that the alveolar epithelium may be a physiological target tissue for aldosterone. Since fluid absorption in the lung is secondary to active Na+ transport, aldosterone may be a potent regulator for maintaining the relatively fluid-free state of the lumen of the lung in some cases of fluid accumulation.

PubMed ID: 2162035




References [+] :
Basset, Significance of active ion transport in transalveolar water absorption: a study on isolated rat lung. 1987, Pubmed