Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
J Biol Chem 1995 Mar 24;27012:6779-87. doi: 10.1074/jbc.270.12.6779.
Show Gene links Show Anatomy links

Fibroblast growth factor (FGF) 3 from Xenopus laevis (XFGF3) binds with high affinity to FGF receptor 2.

Mathieu M , Kiefer P , Mason I , Dickson C .

We demonstrate that purified fibroblast growth factor (FGF) 3 from Xenopus laevis (XFGF3) activates the mitogen-activated protein kinase pathway and induces DNA synthesis in quiescent cells. To characterize the high affinity cell surface receptors that mediate these responses, the ligand binding domains of different FGF receptors (FGFR) were expressed on COS-1 cells, and their affinity for XFGF3 was determined. Unlabeled XFGF3 efficiently competed with 125I-FGF1 for binding to the IIIb and IIIc isoforms of FGFR2, giving 50% displacement (ID50) at 0.3-0.8 nM. Higher XFGF3 concentrations were needed to displace 125I-FGF1 from FGFR3 and FGFR1 (ID50 approximately 4 and 21 nM, respectively), indicating that XFGF3 has a lower affinity for these receptors. No association of XFGF3 with FGFR4 was found using this assay. FGFR2 isoforms isolated from both mouse and Xenopus showed similar high affinity binding of XFGF3 as determined by direct binding assays (Kd values in the range of 0.2-0.6 nM). These results indicate that the binding specificity of XFGF3 is different from that of other FGFs, and identifies FGFR2 as its high affinity receptor.

PubMed ID: 7896824
Article link: J Biol Chem

Species referenced: Xenopus laevis
Genes referenced: fgf1 fgf3 fgfr1 fgfr2 fgfr3 fgfr4