Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-14769
Dev Genes Evol 1998 Jun 01;2084:175-87. doi: 10.1007/s004270050172.
Show Gene links Show Anatomy links

Heterochronic differences of Hoxa-11 expression in Xenopus fore- and hind limb development: evidence for lower limb identity of the anuran ankle bones.

Blanco MJ , Misof BY , Wagner GP .


???displayArticle.abstract???
The wrist (carpus) and ankle (tarsus) of most tetrapods, as well as the wrist of anurans, contains relatively small nodular skeletal elements. The anuran tarsus, however, comprises a pair of long bones, the proximal tarsals tibiale and fibulare, which resemble the lower leg bones, tibia and fibula (zeugopodium). In this paper we investigate whether the proximal tarsals of Xenopus are of zeugopodial character identity, i.e. whether they develop under the influence of the same genes that pattern the lower limb. We compare Hoxa-11 expression in the forelimb bud with that in the hind limb bud by whole-mount in situ hybridization. Hoxa-11 has been implicated in the development of the lower limb. In Xenopus we note three differences between Hoxa-11 expression in fore- and hind limb buds: (1) Hoxa-11 expression is maintained until the hind limb bud reaches a larger size (2 mm) than that of the forelimb bud (1.5 mm); (2) Hoxa-11 expression is maintained over larger spatial domains than in the forelimb; and (3) Hoxa-11 expression has a pronounced posterior polarity in the hind limb, but not in the forelimb. Hind limb expression of Hoxa-11 can be understood as a heterochronic prolonging of the expression dynamic in the forelimb. Finally we found that the proximal tarsals start to develop within the expression domain of Hoxa-11, while in the forelimb the lower arm elements reach the distal expression limit of Hoxa-11. The gene expression data presented here support the notion of a zeugopodial identity of the proximal tarsal elements in Xenopus.

???displayArticle.pubmedLink??? 9634484
???displayArticle.link??? Dev Genes Evol