Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-1331
Toxicol Sci 2005 Dec 01;882:367-74. doi: 10.1093/toxsci/kfi330.
Show Gene links Show Anatomy links

Detection of thyroid system-disrupting chemicals using in vitro and in vivo screening assays in Xenopus laevis.

Sugiyama S , Shimada N , Miyoshi H , Yamauchi K .


???displayArticle.abstract???
We developed a thyroid hormone (TH) inducible primary screening assay for the identification and assessment of man-made chemicals that interfere with the TH-signalling pathway within target cells. The assay was developed in a Xenopus laevis cell line that was transduced with a self-inactivating (SIN) lentivirus vector (LV) containing a luciferase gene. The luciferase activation in this cell line was TH-specific: 3,3',5-L-triiodothyronine (T(3)) > 3,3'5-L-triiodothyroacetic acid (Triac) > 3,3',5-D-triiodothyronine (D-T(3)), > L-thyroxine (T(4)) > 3,3',5'-L-triiodothyronine (rT(3)). The application of the ligand-dependent luciferase assay for screening for thyroid system-disrupting chemicals revealed that three phthalates (dicyclohexyl phthalate, n-butylbenzyl phthalate, and di-n-butyl phthalate), two herbicides (ioxynil and pentachlorophenol) and a miticide (dicofol) had 3,3',5-L-triiodothyronine- T(3)- antagonist activity at concentrations ranging from 10(-6) to 10(-5) M. These chemicals also inhibited the expression of the endogenous primary T(3)-response TH nuclear receptor beta (TRbeta) gene. The inhibitory characteristics of these chemicals were similar for both assays performed, although the assay for T(3)-dependent activation of TRbeta gene was more sensitive than the luciferase assay. These results indicate that the luciferase assay was a rapid method with a small intra-assay variation for the primary screening of thyroid system-disrupting chemicals. Of the six chemicals, only n-butylbenzyl phthalate and pentachlorophenol exhibited T(3)-antagonist activity in an in vivo metamorphosis-based assay. It should be noted that chemicals elicited thyroid system-disrupting activity in the luciferase assay did not always interfere with the thyroid system in vivo.

???displayArticle.pubmedLink??? 16179385
???displayArticle.link??? Toxicol Sci


Species referenced: Xenopus laevis
Genes referenced: thrb