Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
J Biol Chem 2000 Feb 11;2756:3803-9.
Show Gene links Show Anatomy links

Disruption of the 14-3-3 binding site within the B-Raf kinase domain uncouples catalytic activity from PC12 cell differentiation.

MacNicol MC , Muslin AJ , MacNicol AM .

A number of Raf-associated proteins have recently been identified, including members of the 14-3-3 family of phosphoserine-binding proteins. Although both positive and negative regulatory functions have been ascribed for 14-3-3 interactions with Raf-1, the mechanisms by which 14-3-3 binding modulates Raf activity have not been fully established. We report that mutational disruption of 14-3-3 binding to the B-Raf catalytic domain inhibits B-Raf biological activity. Expression of the isolated B-Raf catalytic domain (B-Rafcat) induces PC12 cell differentiation in the absence of nerve growth factor. By contrast, the B-Rafcat 14-3-3 binding mutant, B-Rafcat S728A, was severely compromised for the induction of PC12 cell differentiation. Interestingly, the B-Rafcat 14-3-3 binding mutant retained significant in vitro catalytic activity. In Xenopus oocytes, the analogous full-length B-Raf 14-3-3 binding mutant blocked progesterone-stimulated maturation and the activation of endogenous mitogen-activated protein kinase kinase and mitogen-activated protein kinase. Similarly, the full-length B-Raf 14-3-3 binding mutant inhibited nerve growth factor-stimulated PC12 cell differentiation. We conclude that 14-3-3 interaction with the catalytic domain is not required for kinase activity per se but is essential to couple B-Raf catalytic activity to downstream effector activation.

PubMed ID: 10660530
Article link: J Biol Chem
Grant support: [+]

Species referenced: Xenopus
Genes referenced: braf raf1 snrpe