Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-9976
Am J Physiol Cell Physiol 2000 Dec 01;2796:C1938-45. doi: 10.1152/ajpcell.2000.279.6.C1938.
Show Gene links Show Anatomy links

Guanylyl cyclase stimulatory coupling to K(Ca) channels.

Nara M , Dhulipala PD , Ji GJ , Kamasani UR , Wang YX , Matalon S , Kotlikoff MI .


???displayArticle.abstract???
We coexpressed the human large-conductance, calcium-activated K (K(Ca)) channel (alpha- and beta-subunits) and rat atrial natriuretic peptide (ANP) receptor genes in Xenopus oocytes to examine the mechanism of guanylyl cyclase stimulatory coupling to the channel. Exposure of oocytes to ANP stimulated whole cell K(Ca) currents by 21 +/- 3% (at 60 mV), without altering current kinetics. Similarly, spermine NONOate, a nitric oxide donor, increased K(Ca) currents (20 +/- 4% at 60 mV) in oocytes expressing the channel subunits alone. Stimulation of K(Ca) currents by ANP was inhibited in a concentration-dependent manner by a peptide inhibitor of cGMP-dependent protein kinase (PKG). Receptor/channel stimulatory coupling was not completely abolished by mutating the cAMP-dependent protein kinase phosphorylation site on the alpha-subunit (S869; Nars M, Dhulipals PD, Wang YX, and Kotlikoff MI. J Biol Chem 273: 14920-14924, 1998) or by mutating a neighboring consensus PKG site (S855), but mutation of both residues virtually abolished coupling. Spermine NONOate also failed to stimulate channels expressed from the double mutant cRNAs. These data indicate that nitric oxide donors stimulate K(Ca) channels through cGMP-dependent phosphorylation and that two serine residues (855 and 869) underlie this stimulatory coupling.

???displayArticle.pubmedLink??? 11078709
???displayArticle.link??? Am J Physiol Cell Physiol
???displayArticle.grants??? [+]

Species referenced: Xenopus laevis
Genes referenced: camp nars1 nppa prkg1