Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-9912
Mol Pharmacol 2000 Dec 01;586:1434-40. doi: 10.1124/mol.58.6.1434.
Show Gene links Show Anatomy links

A single amino acid residue on the alpha(5) subunit (Ile215) is essential for ligand selectivity at alpha(5)beta(3)gamma(2) gamma-aminobutyric acid(A) receptors.

Strakhova MI , Harvey SC , Cook CM , Cook JM , Skolnick P .


???displayArticle.abstract???
Imidazobenzodiazepines such as RY-80 have been reported to exhibit both high affinity and selectivity for GABA(A) receptors containing an alpha(5) subunit. A single amino acid residue (alpha(5)Ile215) has been identified that plays a critical role in the high-affinity, subtype-selective effects of RY-80 and structurally related ligands. Thus, substitution of alpha(5)Ile215 with the cognate amino acid contained in the alpha(1) subunit (Val211) reduced the selectivity of RY-80 for alpha(5)beta(3)gamma(2) receptors from approximately 135- to approximately 8-fold compared with alpha(1)beta(3)gamma(2) receptors. This mutation produced a comparable reduction in the selectivity of RY-24 (a structural analog of RY-80) for alpha(5)beta(3)gamma(2) receptors but did not markedly alter the affinities of ligands (e.g., flunitrazepam) that are not subtype-selective. Conversely, substitution of the alpha(1) subunit with the cognate amino acid contained in the alpha(5) subunit (i.e., alpha(1)V211I) increased the affinities of alpha(5)-selective ligands by a approximately 20-fold and reduced by 3-fold the affinity of an alpha(1)-selective agonist (zolpidem). Increasing the lipophilicity (e.g., by substitution of Phe) of alpha(5)215 did not significantly affect the affinities (and selectivities) of RY-80 and RY-24 for alpha(5)-containing GABA(A) receptors. However, the effect of introducing hydrophilic and or charged residues (e.g., Lys, Asp, Thr) at this position was no greater than that produced by the alpha(5)I215V mutation. These data indicate that residue alpha(5)215 may not participate in formation of the lipophilic L(2) pocket that has been proposed to contribute to the unique pharmacological properties of alpha(5)-containing GABA(A) receptors. RY-80 and RY-24 acted as inverse agonists in both wild-type alpha(5)beta(3)gamma(2) and mutant alpha(5)I215Kbeta(3)gamma(2) receptors expressed in Xenopus laevis oocytes. However, both RY-24 and RY-80 acted as antagonists at mutant alpha(5)I215Vbeta(3)gamma(2) and alpha(5)I215Tbeta(3)gamma(2) receptors, whereas the efficacy of flunitrazepam was similar at all three receptor isoforms. The data demonstrate that amino acid residue alpha(5)215 is a determinant of both ligand affinity and efficacy at GABA(A) receptors containing an alpha(5) subunit.

???displayArticle.pubmedLink??? 11093783
???displayArticle.link??? Mol Pharmacol