Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-9381
Riv Biol 2000 Jan 01;933:413-30.
Show Gene links Show Anatomy links

Physiological differentiation of the mitochondria during Bufo bufo development.

Petrucci D , Cesare P .


???displayArticle.abstract???
1) The oxygen consumption increases during Bufo bufo development in accordance with the two steps which border at the "heart beat" stage. 2) Cytochrome c oxidase activity is not proportional to the oxygen consumption: it is notable and constant in the first step, and it only increases in the second. 3) In the mitochondria of preneural embryos, citrate synthase, NADP+ dependent isocitrate dehydrogenase, and succinate dehydrogenase activities are very low in respect to malate dehydrogenase and glutamate oxaloacetate transaminase activities. The Krebs cycle results lowered at the condensing reaction level with acetyl accumulation when pyruvate is available. The same behavior has been observed in the Xenopus laevis oocytes and differentiated tissues. 4) The presence of a phosphagen system which is different from creatine phosphate and arginine phosphate, supporting ATP level, has been demonstrated in B. bufo embryos. 5) Mitochondria of postneural embryos are able to accomplish a complete Krebs cycle by increasing citrate synthase, and succinate dehydrogenase activities. 6) In all B. bufo development, malate dehydrogenase and glutamate oxaloacetate transaminase constitute a multienzymatic system by which the mitochondria accomplish a decarboxylic amino acid shunt required for the transformation of deutoplasm into protoplasm. This shunt is also operative in the X. laevis oocytes. 7) Through pyruvate production, by oxidative decarboxylation of malate, the NAD(P)+ dependent malic enzyme could carry out a fundamental anaplerotic function in the mitochondria which is specialized in the production of biosynthetic blocks belonging to the embryo in which the carbohydrates metabolism rather than the glycolytic activity is designed for pentose phosphate and glycerol phosphate synthesis for protein and cytomembrane production. 8) Consistent metabolic differences have been highlighted between B. bufo embryos and X. laevis embryos.

???displayArticle.pubmedLink??? 11256208
???displayArticle.link??? Riv Biol


Species referenced: Xenopus laevis
Genes referenced: cs