Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-8962
Regul Pept 2001 Jun 15;992-3:111-8. doi: 10.1016/s0167-0115(01)00241-5.
Show Gene links Show Anatomy links

Amphibian glucagon family peptides: potent metabolic regulators in fish hepatocytes.

Mommsen TP , Conlon JM , Irwin DM .


???displayArticle.abstract???
Peptides analogous to glucagon-like peptide-1 (GLP-1) have been isolated from amphibian pancreas and intestine, and their amino acid sequences and cDNA structures elucidated. Just like their mammalian counterpart, these peptides are potent insulinotropins in mammalian pancreatic cells. We show here that these peptides also exert strong glycogenolytic actions when applied to dispersed fish hepatocytes. We compared the potencies of three synthetic GLP-1s from Xenopus laevis and two native GLP-1s from Bufo marinus in the activation of glycogenolysis in the hepatocytes of a marine rockfish (Sebastes caurinus) and two freshwater catfish (Ameiurus nebulosus and A. melas), and demonstrated their effectiveness in increasing the degree of phosphorylation of glycogen phosphorylase. We also compared the glycogenolytic potency of the peptides with those of human GLP-1 and glucagons from human and B. marinus. Sensitivity to these peptides is species-specific, with the rockfish responding at lower concentrations to GLP-1s and the two catfish reacting better to glucagons. However, the relative potency of the amphibian GLP-1s and glucagons is similar in the three species. Xenopus GLP-1C (xGLP-1C) is consistently more potent than xGLP-1B, while xGLP-1A displays the smallest activation of glycogenolysis. Similarly, Bufo GLP-1(32)-the peptide with the highest amino acid sequence identity to xGLP-1C-always shows a higher potency than Bufo GLP-1(37), which is closely related to xGLP-1B. The relative hierarchy of these glycogenolytic GLP-1s differs from their ranking as insulinotropins in mammalian beta-cells. In the rockfish system, Bufo glucagon-36, a C-terminally extended glucagon, is more potent than the shorter bovine glucagon and Bufo glucagon-29 in the activation of glycogenolysis; when tested in A. nebulosus hepatocytes, bovine and amphibian glucagons are equipotent. Amphibian GLP-1s and glucagons activate glycogenolysis in fish hepatocytes through increased phosphorylation of glycogen phosphorylase, implying involvement of the adenylyl cyclase/protein kinase A system in signal transduction. We conclude that the broad physiological effectiveness of GLP-1 has been retained throughout vertebrate evolution, and that both insulinotropic activity and glycogenolytic actions belong to the repertoire of GLP-1.

???displayArticle.pubmedLink??? 11384772
???displayArticle.link??? Regul Pept


Species referenced: Xenopus laevis
Genes referenced: gcg