Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-8654
Kidney Int 2001 Aug 01;602:694-704. doi: 10.1046/j.1523-1755.2001.060002694.x.
Show Gene links Show Anatomy links

Glycosphingolipids modulate renal phosphate transport in potassium deficiency.

Zajicek HK , Wang H , Puttaparthi K , Halaihel N , Markovich D , Shayman J , Béliveau R , Wilson P , Rogers T , Levi M .


???displayArticle.abstract???
BACKGROUND: Potassium (K) deficiency (KD) and/or hypokalemia have been associated with disturbances of phosphate metabolism. The purpose of the present study was to determine the cellular mechanisms that mediate the impairment of renal proximal tubular Na/Pi cotransport in a model of K deficiency in the rat. METHODS: K deficiency in the rat was achieved by feeding rats a K-deficient diet for seven days, which resulted in a marked decrease in serum and tissue K content. RESULTS: K deficiency resulted in a marked increase in urinary Pi excretion and a decrease in the V(max) of brush-border membrane (BBM) Na/Pi cotransport activity (1943 +/- 95 in control vs. 1184 +/- 99 pmol/5 sec/mg BBM protein in K deficiency, P < 0.02). Surprisingly, the decrease in Na/Pi cotransport activity was associated with increases in the abundance of type I (NaPi-1), and type II (NaPi-2) and type III (Glvr-1) Na/Pi protein. The decrease in Na/Pi transport was associated with significant alterations in BBM lipid composition, including increases in sphingomyelin, glucosylceramide, and ganglioside GM3 content and a decrease in BBM lipid fluidity. Inhibition of glucosylceramide synthesis resulted in increases in BBM Na/Pi cotransport activity in control and K-deficient rats. The resultant Na/Pi cotransport activity in K-deficient rats was the same as in control rats (1148 +/- 52 in control + PDMP vs. 1152 +/- 61 pmol/5 sec/mg BBM protein in K deficiency + PDMP). These changes in transport activity occurred independent of further changes in BBM NaPi-2 protein or renal cortical NaPi-2 mRNA abundance. CONCLUSION: K deficiency in the rat causes inhibition of renal Na/Pi cotransport activity by post-translational mechanisms that are mediated in part through alterations in glucosylceramide content and membrane lipid dynamics.

???displayArticle.pubmedLink??? 11473652
???displayArticle.link??? Kidney Int
???displayArticle.grants??? [+]

Species referenced: Xenopus laevis
Genes referenced: slc20a1