Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-8059
J Biol Chem 2002 Feb 15;2777:4797-805. doi: 10.1074/jbc.M107957200.
Show Gene links Show Anatomy links

Splitting the two pore domains from TOK1 results in two cationic channels with novel functional properties.

Saldaña C , Naranjo D , Coria R , Peña A , Vaca L .


???displayArticle.abstract???
Potassium channels are membrane-spanning proteins with several transmembrane segments and a single pore region where ion conduction takes place (Biggin, P. C., Roosild, T., and Choe, S. (2000) Curr. Opin. Struct. Biol. 4, 456-461; Doyle, D. A., Morais Cabral, J., Pfuetzner, R. A., Kuo, A., Gulbis, J. M., Cohen, S. L., Chait, B. T., and MacKinnon, R. (1998) Science 280, 69-77). TOK1, a potassium channel identified in the yeast Saccharomyces cerevisiae, was the first described member from a growing new family of potassium channels with two pore domains in tandem (2P) (Ketchum, K. A., Joiner, W. J., Sellers, A. J., Kaczmarek, L. K., and Goldstein, S. A. (1995) Nature 376, 690-695). In an attempt to understand the relative contribution of each one of the 2P from TOK1 to the functional properties of this channel, we split and expressed the pore domains separately or in combination. Expression of the two domains separately rescued a potassium transport-deficient yeast mutant, suggesting that each domain forms functional potassium-permeable channels in yeast. In Xenopus laevis oocytes expression of each pore domain resulted in the appearance of unique inwardly rectifying cationic channels with novel gating and pharmacological properties. Both pore domains were poorly selective to potassium; however, upon co-expression they partially restored TOK1 channel selectivity. The single channel conductance was different in both pore domains with 7 +/- 1 (n = 12) and 15 +/- 2 (n = 12) picosiemens for the first and second domain, respectively. In light of the known structure of the Streptomyces lividans KcsA potassium channel pore (see Doyle et al. above), these results suggest a novel non-four-fold-symmetric architecture for 2P potassium-selective channels.

???displayArticle.pubmedLink??? 11714706
???displayArticle.link??? J Biol Chem


Species referenced: Xenopus laevis
Genes referenced: tbx2