Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-7784
Biochem Cell Biol 2001 Jan 01;796:719-28.
Show Gene links Show Anatomy links

Aldolase-localization in cultured cells: cell-type and substrate-specific regulation of cytoskeletal associations.

Schindler R , Weichselsdorfer E , Wagner O , Bereiter-Hahn J .


???displayArticle.abstract???
The role of aldolase as a true F- and G-actin binding protein, including modulating actin polymerization, initiating bundling, and giving rise to supramolecular structures that emanate from actin fibrils, has been established using indirect immunofluorescence, permeabilization of XTH-2 cells and keratocytes, and microinjection of fluorescence-labeled aldolase. In addition, binding to intermediate filaments, vimentin, and cytokeratins has been demonstrated. In permeabilized cells in the presence of fructose-1,6-bisphosphate (20-2000 microM) aldolase shifts from association with actin fibres to intermediate filaments. Plenty of free binding sites on microtubules have been revealed by addition of fluorochromed aldolase derived from rabbit skeletal muscle. However, endogenous aldolase was never found associated with microtubules. Differences in actin polymerization in the presence of aldolase as revealed by pyrene-labeled actin fluorimetry and viscosimetry were explained by electron microscopy showing the formation of rod-like structures (10 nm wide, 20-60 nm in length) by association of aldolase with G-actin, which prevents further polymerization. Upon the addition of fructose-1,6-bisphosphate, G-actin-aldolase mixture polymerizes to a higher viscosity and forms stiffer filaments than pure actin of the same concentration.

???displayArticle.pubmedLink??? 11800012
???displayArticle.link??? Biochem Cell Biol


Species referenced: Xenopus laevis
Genes referenced: actb actl6a vim