Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-7487
J Membr Biol 2002 Jan 15;1852:145-55. doi: 10.1007/s00232-001-0122-1.
Show Gene links Show Anatomy links

Mutation D384N alters recovery of the immobilized gating charge in rat brain IIA sodium channels.

Kühn FJ , Greeff NG .


???displayArticle.abstract???
Rat brain (rBIIA) sodium channel fast inactivation kinetics and the time course of recovery of the immobilized gating charge were compared for wild type (WT) and the pore mutant D384N heterologously expressed in Xenopus oocytes with or without the accessory beta1-subunit. In the absence of the beta1-subunit, WT and D384N showed characteristic bimodal inactivation kinetics, but with the fast gating mode significantly more pronounced in D384N. Both, for WT and D384N, coexpression of the beta1-subunit further shifted the time course of inactivation to the fast gating mode. However, the recovery of the immobilized gating charge (Qg) of D384N was clearly faster than in WT, irrespective of the presence of the beta1-subunit. This was also reflected by the kinetics of the slow Ig OFF tail. On the other hand, the voltage dependence of the Qg-recovery was not changed by the mutation. These data suggest a direct interaction between the selectivity filter and the immobilized voltage sensor S4D4 of rBIIA sodium channels.

???displayArticle.pubmedLink??? 11891573
???displayArticle.link??? J Membr Biol