Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-7413
Cell Physiol Biochem 2002 Jan 01;121:1-8. doi: 10.1159/000047821.
Show Gene links Show Anatomy links

Intracellular cysteines of the cystic fibrosis transmembrane conductance regulator (CFTR) modulate channel gating.

Ketchum CJ , Yue H , Alessi KA , Devidas S , Guggino WB , Maloney PC .


???displayArticle.abstract???
The cystic fibrosis transmembrane conductance regulator (CFTR), a member of the ATP-binding cassette superfamily, is a cAMP-activated chloride channel. CFTR contains two transmembrane domains (TMDs), two nucleotide-binding domains (NBDs), and a regulatory (R) domain. We found that whole-cell CFTR-dependent Cl- currents in Xenopus laevis oocytes were sensitive to HgCl(2), suggesting that modification of endogenous cysteines alters channel activity. To understand better this phenomenon, site-directed mutagenesis was employed to generate both individual cysteine replacements and a version of the molecule with no cysteines in the hydrophobic sector. Each mutant displayed a forskolin/IBMX-activated Cl(-) conductance similar to wild type, indicating that none of the cysteines located within the TMDs is essential. Subsequent single-channel analysis of inside-out patches excised from HEK293 cells expressing either cysteine-less or wild-type CFTR showed that intracellular application of a membrane impermeant sulphydryl reagent, p-chloromercuribenzosulfonate (PCMBS), significantly reduced open probability without affecting ion selectivity or conductance. The cysteine-less molecule also acquired a voltage-dependent sensitivity to extracellular PCMBS not observed in the wild type, perhaps due to a more flexible conformation that allowed PCMBS access to the intracellular surface. Together, these experiments suggest that endogenous intracellular cysteines, located primarily within the NBDs and/or R domain, influence channel gating.

???displayArticle.pubmedLink??? 11914543
???displayArticle.link??? Cell Physiol Biochem
???displayArticle.grants??? [+]

Species referenced: Xenopus laevis
Genes referenced: camp cftr