Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-7402
J Exp Biol 2002 Apr 01;205Pt 8:1145-52. doi: 10.1242/jeb.205.8.1145.
Show Gene links Show Anatomy links

Trade-offs between speed and endurance in the frog Xenopus laevis: a multi-level approach.

Wilson RS , James RS , Van Damme R .


???displayArticle.abstract???
One of the most interesting trade-offs within the vertebrate locomotor system is that between speed and endurance capacity. However, few studies have demonstrated a conflict between whole-animal speed and endurance within a vertebrate species. We investigated the existence of trade-offs between speed and endurance capacity at both the whole-muscle and whole-animal levels in post-metamorphs of the frog Xenopus laevis. The burst-swimming performance of 55 frogs was assessed using a high-speed digital camera, and their endurance capacity was measured in a constant-velocity swimming flume. The work-loop technique was used to assess maximum power production of whole peroneus muscles at a cycle frequency of 6 Hz, while fatigue-resistance was determined by recording the decrease in force and net power production during a set of continuous cycles at 2 Hz. We found no significant correlations between measures of burst swimming performance and endurance capacity, suggesting that there is no trade-off between these two measures of whole-animal performance. In contrast, there was a significant negative correlation between peak instantaneous power output of the muscles at 6 Hz and the fatigue-resistance of force production at 2 Hz (other correlations between power and fatigue were negative but non-significant). Thus, our data support the suggestion that a physiological conflict between maximum power output and fatigue resistance exists at the level of vertebrate muscles. The apparent incongruence between whole-muscle and whole-animal performance warrants further detailed investigation and may be related to factors influencing both whole-muscle and whole-animal performance measures.

???displayArticle.pubmedLink??? 11919273
???displayArticle.link??? J Exp Biol


Species referenced: Xenopus laevis