Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-7096
Biochem Pharmacol 2002 May 15;6310:1797-806. doi: 10.1016/s0006-2952(02)00953-x.
Show Gene links Show Anatomy links

Differential regulation of Ca(2+)-dependent Cl- currents by FP prostanoid receptor isoforms in Xenopus oocytes.

Anthony TL , Fujino H , Pierce KL , Yool AJ , Regan JW .


???displayArticle.abstract???
The FP(A) and FP(B) prostanoid receptor isoforms are G-protein-coupled receptors that are activated by prostaglandin F(2alpha) (PGF(2alpha)). Differences in their carboxyl termini prompted us to examine the intracellular calcium (Ca(2+)) signaling of these receptor isoforms using the Xenopus oocyte expression system. Protein expression was determined by immunofluorescence microscopy and whole cell binding with [3H]PGF(2alpha). Positive immunolabeling was observed on the outer membranes of oocytes expressing FLAG-tagged FP receptor isoforms, but not on control (water-injected) oocytes. Intracellular signaling was examined using a two-electrode voltage clamp. Specific whole-cell binding was also detected for both receptor isoforms. Bath application of 10 microM PGF(2alpha) to FP(A)-expressing oocytes produced a chloride (Cl-) current response similar to that of an injection of inositol 1,4,5-trisphosphate (InsP(3)) (5.76+/-0.6 microA, peak current; N=23) that returned to control levels within 25 min. In FP(B)-expressing oocytes the activation of the Cl- current was delayed or completely absent (1.38+/-0.2 microA, peak current; N=18). Control oocytes were not responsive to the application of PGF(2alpha) (0.87+/-0.1 microA, peak current; N=10). Activation of Cl- currents for both FP receptor isoforms was dependent upon intracellular Ca(2+) stores as a 30-min pretreatment with thapsigargin (1 microM; N=5) blocked the PGF(2alpha) induction of the Cl- current. These data indicate that the FP prostanoid receptor isoforms differ in their ability to activate Ca(2+)-dependent Cl- channels when expressed in Xenopus oocytes. The difference appears to be in the ability of the two FP prostanoid receptor isoforms to mobilize intracellular calcium.

???displayArticle.pubmedLink??? 12034364
???displayArticle.link??? Biochem Pharmacol
???displayArticle.grants??? [+]