Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-6640
J Biol Chem 2002 Nov 29;27748:45969-76. doi: 10.1074/jbc.M203922200.
Show Gene links Show Anatomy links

Differences in apparent pore sizes of low and high voltage-activated Ca2+ channels.

Cataldi M , Perez-Reyes E , Tsien RW .


???displayArticle.abstract???
Pore size is of considerable interest in voltage-gated Ca(2+) channels because they exemplify a fundamental ability of certain ion channels: to display large pore diameter, but also great selectivity for their ion of choice. We determined the pore size of several voltage-dependent Ca(2+) channels of known molecular composition with large organic cations as probes. T-type channels supported by the Ca(V)3.1, Ca(V)3.2, and Ca(V)3.3 subunits; L-type channels encoded by the Ca(V)1.2, beta(1), and alpha(2)delta(1) subunits; and R-type channels encoded by the Ca(V)2.3 and beta(3) subunits were each studied using a Xenopus oocyte expression system. The weak permeabilities to organic cations were resolved by looking at inward tails generated upon repolarization after a large depolarizing pulse. Large inward NH(4)(+) currents and sizable methylammonium and dimethylammonium currents were observed in all of the channels tested, whereas trimethylammonium permeated only through L- and R-type channels, and tetramethylammonium currents were observed only in L-type channels. Thus, our experiments revealed an unexpected heterogeneity in pore size among different Ca(2+) channels, with L-type channels having the largest pore (effective diameter = 6.2 A), T-type channels having the tiniest pore (effective diameter = 5.1 A), and R-type channels having a pore size intermediate between these extremes. These findings ran counter to first-order expectations for these channels based simply on their degree of selectivity among inorganic cations or on the bulkiness of their acidic side chains at the locus of selectivity.

???displayArticle.pubmedLink??? 12198115
???displayArticle.link??? J Biol Chem
???displayArticle.grants??? [+]

Species referenced: Xenopus laevis
Genes referenced: ran