Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-6467
Pflugers Arch 2002 Sep 01;4446:760-70. doi: 10.1007/s00424-002-0870-5.
Show Gene links Show Anatomy links

The induction of an ATP-sensitive K(+) current in cardiac myocytes of air- and water-breathing vertebrates.

Paajanen V , Vornanen M .


???displayArticle.abstract???
Opening of ATP-sensitive potassium channels (K(ATP)) is an effective cardioprotective mechanism in mammals. The amplitude of the ATP-sensitive K(+) current (I(K,ATP)) and the opening sensitivity of K(ATP) channels are, however, poorly known in ectotherms. As O(2)-sensing mechanisms and reactions to O(2) deficiency differ in aquatic and terrestrial animals, we hypothesised that the response of K(ATP) channels to metabolic inhibition would be different between air- and water-breathers. We therefore compared I(K,ATP) in ventricular myocytes of an anoxia-sensitive (Oncorhynchus mykiss) and an anoxia-tolerant fish (Carassius carassius), two amphibians (Xenopus laevis and Rana temporaria) and a terrestrial reptile (Lacerta vivipara) using the whole-cell patch-clamp method. I(K,ATP) was induced by preventing mitochondrial and/or glycolytic ATP production and perfusing myocytes with an ATP-free pipette solution. All species had a glibenclamide-sensitive I(K,ATP), but the current amplitude was much greater in air-breathers than in water-breathers. Furthermore, the I(K,ATP) in air-breathers was more sensitive to intracellular ATP depletion than in water-breathing animals. These findings indicate that I(K,ATP) is larger and more easily induced in air- than water-breathers. In all ectotherms, the first response to complete metabolic inhibition was the induction of a large inward current, the amplitude of which exceeded that of I(K,ATP). Thus, the protective effect of the I(K,ATP) may be physiologically significant only during partial metabolic blockade.

???displayArticle.pubmedLink??? 12355176
???displayArticle.link??? Pflugers Arch