Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-6210
Biochim Biophys Acta 2002 Dec 12;15792-3:142-52. doi: 10.1016/s0167-4781(02)00535-3.
Show Gene links Show Anatomy links

The interaction of cisplatin and analogues with DNA in reconstituted chromatin.

Galea AM , Murray V .


???displayArticle.abstract???
The influence of chromatin structure on cis-diamminedichloroplatinum(II) (cisplatin) DNA damage was investigated in a reconstituted nucleosome system. Nucleosomes were reconstituted on the somatic 5S rRNA gene from Xenopus borealis using the octamer transfer method of reconstitution. Footprinting techniques, utilising bleomycin and DNase I as the damaging agents, were employed to establish the precise location of positioned nucleosomes with respect to the DNA sequence. Reconstituted nucleosomal DNA was treated with cisplatin and drug-induced DNA adduct formation was quantitatively analysed with a polymerase stop assay using Taq DNA polymerase. A densitometric comparison of the relative damage band intensities between purified and reconstituted DNA revealed regions of relative protection corresponding to the sites of the positioned nucleosome cores. This indicated that the preferred site of cisplatin DNA binding was in the linker region of the nucleosome. Statistical analysis showed significant protection from cisplatin DNA damage in the core region of the nucleosome. Three cisplatin analogues were also investigated in this reconstituted nucleosome system. These analogues, cis-diammine(1,1-cyclobutanedicarboxylato)platinum(II) (carboplatin), cis-dichlorobis(cyclohexylamine)platinum(II) (cis-[PtCl(2)(C(6)H(11)NH(2))(2)]) and dichloro(N-[3-[(2-aminoethyl)-amino]propyl]acridine-4-carboxamide)platinum(II) (ac-PtenCl(2)(n3)), were also found to target the linker region of the nucleosome. The latter DNA-targeted acridine-platinum complex gave rise to the most predominant footprints of all the Pt compounds tested.

???displayArticle.pubmedLink??? 12427549
???displayArticle.link??? Biochim Biophys Acta