Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-60789
Biol Pharm Bull 2024 Jan 01;477:1338-1344. doi: 10.1248/bpb.b24-00210.
Show Gene links Show Anatomy links

Cdt1 Self-associates via the Winged-Helix Domain of the Central Region during the Licensing Reaction, Which Is Inhibited by Geminin.

Kashima Y , Tsuyama T , Sakai A , Morita K , Suzuki H , Azuma Y , Tada S .


???displayArticle.abstract???
The initiation of DNA replication is tightly controlled by the licensing system that loads replicative DNA helicases onto replication origins to form pre-replicative complexes (pre-RCs) once per cell cycle. Cdc10-dependent transcript 1 (Cdt1) plays an essential role in the licensing reaction by recruiting mini-chromosome maintenance (MCM) complexes, which are eukaryotic replicative DNA helicases, to their origins via direct protein-protein interactions. Cdt1 interacts with other pre-RC components, the origin recognition complex, and the cell division cycle 6 (Cdc6) protein; however, the molecular mechanism by which Cdt1 functions in the MCM complex loading process has not been fully elucidated. Here, we analyzed the protein-protein interactions of recombinant Cdt1 and observed that Cdt1 self-associates via the central region of the molecule, which is inhibited by the endogenous licensing inhibitor, geminin. Mutation of two β-strands of the winged-helix domain in the central region of Cdt1 attenuated its self-association but could still interact with other pre-RC components and DNA similarly to wild-type Cdt1. Moreover, the Cdt1 mutant showed decreased licensing activity in Xenopus egg extracts. Together, these results suggest that the self-association of Cdt1 is crucial for licensing.

???displayArticle.pubmedLink??? 39048355
???displayArticle.link??? Biol Pharm Bull