Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-59733
J Med Chem 2023 Feb 09;663:2020-2031. doi: 10.1021/acs.jmedchem.2c01786.
Show Gene links Show Anatomy links

Discovery, Characterization, and Engineering of LvIC, an α4/4-Conotoxin That Selectively Blocks Rat α6/α3β4 Nicotinic Acetylcholine Receptors.

Zhu X , Wang S , Kaas Q , Yu J , Wu Y , Harvey PJ , Zhangsun D , Craik DJ , Luo S .


???displayArticle.abstract???
α6β4 nicotinic acetylcholine receptors (nAChRs) are expressed in the central and peripheral nervous systems, but their functions are not fully understood, largely because of a lack of specific ligands. Here, we characterized a novel α-conotoxin, LvIC, and designed a series of analogues to probe structure-activity relationships at the α6β4 nAChR. The potency and selectivity of these conotoxins were tested using two-electrode voltage-clamp recording on nAChR subtypes expressed in Xenopus laevis oocytes. One of the analogues, [D1G,ΔQ14]LvIC, potently blocked α6/α3β4 nAChRs (α6/α3 is a chimera) with an IC50 of 19 nM, with minimal activity at other nAChR subtypes, including the structurally similar α6/α3β2β3 and α3β4 subtypes. Using NMR, molecular docking, and receptor mutation, structure-activity relationships of [D1G,ΔQ14]LvIC at the α6/α3β4 nAChR were defined. It is a potent and specific antagonist of α6β4 nAChRs that could potentially serve as a novel molecular probe to explore α6β4 nAChR-related neurophysiological and pharmacological functions.

???displayArticle.pubmedLink??? 36682014
???displayArticle.link??? J Med Chem