Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-58328
Cell Calcium 2021 Sep 01;98:102447. doi: 10.1016/j.ceca.2021.102447.
Show Gene links Show Anatomy links

The expression of constitutively active CPK3 impairs potassium uptake and transport in Arabidopsis under low K+ stress.

Huimin R , Hussain J , Wenjie L , Fenyong Y , Junjun G , Youhan K , Shenkui L , Guoning Q .


???displayArticle.abstract???
Potassium (K+) is a vital cation and is involved in multiple physiological functions in plants. K+ uptake from outer medium by roots is a tightly regulated process and is mainly carried out by two high affinity K+ transport proteins AKT1 and HAK5. It has been shown that calcium (Ca2+) signaling plays important roles in the regulation of K+ transport in plants. Ca2+-dependent protein kinases (CPKs) are involved in regulation of multiple K+ channels in different tissues. However, it remains to be studied whether CPKs are involved in the regulation of AKT1 and, thereby, K+ transport. Here, we have shown that constitutively active version of CPK3 (CPK3CA) is involved in K+ transport in Arabidopsis via regulating AKT1 under low K+ conditions. The constitutively active version of CPK3 (CPK3CA), as well as CPK21 (CPK21CA), inhibited K+ currents of AKT1 in Xenopus oocytes. CPK3CA inhibited only channel conductance but had no effect on channel open probability. Further, CPK3 in vivo interacted with AKT1. Under low K+ conditions, cpk3 knock-out mutants had no distinct phenotype, while the seedlings of 35S-CPK3CA overexpressing lines died even at normal K+ concentration. Further, the transgenic lines expressing CPK3CA under AKT1 promoter (ProAKT1-CPK3CA) exhibited the same phenotype as akt1 mutant with a defective root growth and leaf chlorosis. Moreover, ProAKT1-CPK3CA transgenic lines had lower root and shoot K+ contents than Col. Overall, the data reported here demonstrate that the expression of constitutively active of CPK3 impairs potassium uptake and transports in Arabidopsis under low K+ stress by inhibiting the activity of AKT1.

???displayArticle.pubmedLink??? 34333245
???displayArticle.link??? Cell Calcium


Genes referenced: akt1