Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-57481
J Am Chem Soc 2019 Oct 09;14140:15840-15849. doi: 10.1021/jacs.9b06580.
Show Gene links Show Anatomy links

Probing Binding Interactions of Cytisine Derivatives to the α4β2 Nicotinic Acetylcholine Receptor.

Blom AEM , Campello HR , Lester HA , Gallagher T , Dougherty DA .


???displayArticle.abstract???
Nicotinic acetylcholine receptors (nAChRs) are crucial for communication between synapses in the central nervous system. As such, they are also implicated in several neuropsychiatric and addictive diseases. Cytisine is a partial agonist of some nAChRs and has been used for smoking cessation. Previous studies have established a binding model for several agonists to several nAChR subtypes. Here, we evaluate the extent to which this model applies to cytisine at the α4β2 nAChR, which is a subtype that is known to play a prominent role in nicotine addiction. Along with the commonly seen cation-π interaction and two hydrogen bonds, we find that cytisine makes a second cation-π interaction at the agonist binding site. We also evaluated a series of C(10)-substituted cytisine derivatives, using two-electrode voltage-clamp electrophysiology and noncanonical amino acid mutagenesis. Double-mutant cycle analyses revealed that C(10) substitution generally strengthens the newly established second cation-π interaction, while it weakens the hydrogen bond typically seen to LeuE in the complementary subunit. The results suggest a model for how cytisine derivatives substituted at C(10) (as well as C(9)/C(10)) adjust their binding orientation, in response to pyridone ring substitution.

???displayArticle.pubmedLink??? 31518499
???displayArticle.link??? J Am Chem Soc