Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-56076
Data Brief 2019 Jun 03;25:104091. doi: 10.1016/j.dib.2019.104091.
Show Gene links Show Anatomy links

Data demonstrating distinct embryonic developmental defects induced by bisphenol a alternatives.

Arancio AL , Cohenour ER , Cole KD , Dominguez AR , Kadie J , Maloney WC , Cilliers C , Schuh SM .


???displayArticle.abstract???
Embryos of Xenopus laevis (African clawed frog) were exposed to the widespread environmental plasticizers bisphenol AF (BPAF; 0.003-3 μM), bisphenol A (BPA; 1-50 μM), or 17β-estradiol (E2; 10 μM) from just after fertilization through 96 hours of development. The potencies and cellular and morphological effects were compared across chemical treatments and controls. The embryos were staged, counted and imaged, and time-lapse movies collected, on an inverted stereomicroscope and camera. The data show there were both shared and unique effects of BPAF, BPA, and E2, on early cleavage divisions and development of the spinal cord, head, and gut, with BPAF having the greatest potency and toxicity (1000 times more potent than BPA). Specifically, cleavage divisions, within 1-6 hours of exposure had severe irregularities including asymmetrical division, slowed mitosis and cytokinesis, cellular dissociation, and fewer numbers of cells per embryo. By 48 hours of exposure the embryos had curved body axis defects, neural tube defects including curved, incomplete, or two neural tubes, ventral and gut blisters, and overall extreme abnormalities. By 96 hours of exposure estradiol caused tail flexures/bent spines, severe pigmentation reduction, long loosely coiled gut, and a ventral blister in 100% of embryos. BPA caused truncated body axis defects, tail flexures, and head and eye malformations in over 60% of embryos. BPAF, at the lowest doses tested, caused craniofacial defects, shorter tails, ventral blisters, edema and peritoneal effusion in over 75% of the surviving embryos. For a complete description, interpretation of the data and a discussion refer to the article in press Arancio et al., 2018.

???displayArticle.pubmedLink??? 31249853
???displayArticle.pmcLink??? PMC6586600
???displayArticle.link??? Data Brief


GO keywords: neural tube development


???attribute.lit??? ???displayArticles.show???
References :
Arancio, Bisphenol A, Bisphenol AF, di-n-butyl phthalate, and 17β-estradiol have shared and unique dose-dependent effects on early embryo cleavage divisions and development in Xenopus laevis. 2019, Pubmed, Xenbase