Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-56069
Neuropharmacology 2019 Oct 01;157:107691. doi: 10.1016/j.neuropharm.2019.107691.
Show Gene links Show Anatomy links

α-Conotoxin VnIB from Conus ventricosus is a potent and selective antagonist of α6β4* nicotinic acetylcholine receptors.

van Hout M , Valdes A , Christensen SB , Tran PT , Watkins M , Gajewiak J , Jensen AA , Olivera BM , McIntosh JM .


???displayArticle.abstract???
α6-containing (α6*) nicotinic acetylcholine receptors (nAChRs) are expressed throughout the periphery and the central nervous system and constitute putative therapeutic targets in pain, addiction and movement disorders. The α6β2* nAChRs are relatively well studied, in part due to the availability of target specific α-conotoxins (α-Ctxs). In contrast, all native α-Ctxs identified that potently block α6β4 nAChRs exhibit higher potencies for the closely related α6β2β3 and/or α3β4 subtypes. In this study, we have identified a novel peptide from Conus ventricosus with pronounced selectivity for the α6β4 nAChR. The peptide-encoding gene was cloned from genomic DNA and the predicted mature peptide, α-Ctx VnIB, was synthesized. The functional properties of VnIB were characterized at rat and human nAChRs expressed in Xenopus oocytes by two-electrode voltage clamp electrophysiology. VnIB potently inhibited ACh-evoked currents at rα6β4 and rα6/α3β4 nAChRs, displayed ∼20-fold and ∼250-fold lower potencies at rα3β4 and rα6/α3β2β3 receptors, respectively, and exhibited negligible effects at eight other nAChR subtypes. Interestingly, even higher degrees of selectivity were observed for hα6/α3β4 over hα6/α3β2β3 and hα3β4 receptors. Finally, VnIB displayed fast binding kinetics at rα6/α3β4 (on-rate t½ = 0.87 min-1, off-rate t½ = 2.7 min-1). The overall preference of VnIB for β4* over β2* nAChRs is similar to the selectivity profiles of other 4/6 α-Ctxs. However, in contrast to previously identified native α-Ctxs targeting α6* nAChRs, VnIB displays pronounced selectivity for α6β4 nAChRs over both α3β4 and α6β2β3 receptors. VnIB thus represents a novel molecular probe for elucidating the physiological role and therapeutic properties of α6β4* nAChRs.

???displayArticle.pubmedLink??? 31255696
???displayArticle.pmcLink??? PMC6693646
???displayArticle.link??? Neuropharmacology
???displayArticle.grants??? [+]

Species referenced: Xenopus laevis
Genes referenced: vsig1

References [+] :
Abraham, Neuronal Nicotinic Acetylcholine Receptor Modulators from Cone Snails. 2018, Pubmed