Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-5528
Brain Res 2003 Apr 11;9682:227-37. doi: 10.1016/s0006-8993(03)02245-5.
Show Gene links Show Anatomy links

Distinct regulation of expressed calcium channels 2.3 in Xenopus oocytes by direct or indirect activation of protein kinase C.

Kamatchi GL , Tiwari SN , Chan CK , Chen D , Do SH , Durieux ME , Lynch C .


???displayArticle.abstract???
Protein kinase C (PKC)-dependent regulation of voltage-gated Ca (Ca(v); with alpha(1)beta1Balpha2/delta subunits) channel 2.3 was investigated using phorbol 12-myristate 13-acetate (PMA), or by M(1) muscarinic receptor activation in Xenopus oocytes. The inward Ca(2+)-current with Ba(2+) (I(Ba)) as the charge carrier was potentiated by PMA or acetyl-beta-methylcholine (MCh). The inactivating [I(inact)] and non-inactivating [I(noninact)] components of I(Ba) and the time constant of inactivation tau(inact) were all increased by MCh or PMA. This may be a PKC-dependent action since the effect of MCh and PMA was blocked by Ro-31-8425 or beta-pseudosubstrate. MCh effect was blocked by atropine, guanosine-5'-O-(2-thiodiphosphate) trilithium (GDPbetaS) or U-73122. The effect of MCh but not PMA was blocked by the inhibition of inositol-1,4,5-trisphosphate (IP3) receptors, intracellular Ca(2+) ([Ca(2+)](i)) or the translocation of conventional PKC (cPKC) with heparin, BAPTA and betaC2.4, respectively. While a lower concentration (25 nM) of Ro-31-8425 blocked MCh, a higher concentration (500 nM) of Ro-31-8425 was required to block PMA action. This differential susceptibility of MCh and PMA to heparin, BAPTA, betaC2.4 or Ro-31-8425 is suggestive of the involvement of Ca(2+)-dependent cPKC in MCh action, whereas cPKC and Ca(2+)-independent novel PKC (nPKC) in PMA action. PMA led to additional increase in I(Ba) that was already potentiated by preadministered MCh (1 or 10 microM), leading to the suggestion that differential phosphorylation sites for cPKC and nPKC may be present in the alpha(1)2.3 subunit of Ca(v) 2.3 channels.

???displayArticle.pubmedLink??? 12663092
???displayArticle.link??? Brain Res
???displayArticle.grants??? [+]

Species referenced: Xenopus
Genes referenced: pmch