Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-55175
Neurotoxicology 2018 Dec 01;69:288-295. doi: 10.1016/j.neuro.2018.07.021.
Show Gene links Show Anatomy links

Mode of action of piperovatine, an insecticidal piperamide isolated from Piper piscatorum (Piperaceae), against voltage-gated sodium channels.

Suzuki T , Yamato S .


???displayArticle.abstract???
Piperamides, which are secondary metabolites in the genus Piper, have potent insecticidal activity, and have thus inspired the development of novel insecticides. In this study, piperovatine, a piperamide from Piper piscatorum (Piperaceae), was investigated using a two-electrode voltage clamp to clarify its detailed mode of action against voltage-gated sodium channels, a classic target. In Xenopus oocytes expressing voltage-gated sodium channels from German cockroach (Blattella germanica), piperovatine induced inward currents depending on repetitive openings. For instance, maximal currents were generated with 10 μM piperovatine following 100 trains of depolarizing pulses with frequency 25 Hz. Piperovatine also shifted the half-activation voltage after conditioning pulses from -35 mV to -45 mV. In addition, piperovatine-modified currents were correlated with not only the number of prior conditioning pulses but also the proportion of activated channels. Finally, piperovatine was found to stabilize voltage-gated sodium channels in the fast-inactivated state after opening, and inhibit transition to the slow-inactivated state. These results suggest that piperovatine preferably binds to activated channels and stabilizes voltage sensors at the conformation acquired during depolarization.

???displayArticle.pubmedLink??? 30098356
???displayArticle.link??? Neurotoxicology