Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-54013
ACS Chem Biol 2017 May 19;125:1353-1362. doi: 10.1021/acschembio.7b00222.
Show Gene links Show Anatomy links

Photoaffinity Ligand for the Inhalational Anesthetic Sevoflurane Allows Mechanistic Insight into Potassium Channel Modulation.

Woll KA , Peng W , Liang Q , Zhi L , Jacobs JA , Maciunas L , Bhanu N , Garcia BA , Covarrubias M , Loll PJ , Dailey WP , Eckenhoff RG .


???displayArticle.abstract???
Sevoflurane is a commonly used inhaled general anesthetic. Despite this, its mechanism of action remains largely elusive. Compared to other anesthetics, sevoflurane exhibits distinct functional activity. In particular, sevoflurane is a positive modulator of voltage-gated Shaker-related potassium channels (Kv1.x), which are key regulators of action potentials. Here, we report the synthesis and validation of azisevoflurane, a photoaffinity ligand for the direct identification of sevoflurane binding sites in the Kv1.2 channel. Azisevoflurane retains major sevoflurane protein binding interactions and pharmacological properties within in vivo models. Photoactivation of azisevoflurane induces adduction to amino acid residues that accurately reported sevoflurane protein binding sites in model proteins. Pharmacologically relevant concentrations of azisevoflurane analogously potentiated wild-type Kv1.2 and the established mutant Kv1.2 G329T. In wild-type Kv1.2 channels, azisevoflurane photolabeled Leu317 within the internal S4-S5 linker, a vital helix that couples the voltage sensor to the pore region. A residue lining the same binding cavity was photolabeled by azisevoflurane and protected by sevoflurane in the Kv1.2 G329T. Mutagenesis of Leu317 in WT Kv1.2 abolished sevoflurane voltage-dependent positive modulation. Azisevoflurane additionally photolabeled a second distinct site at Thr384 near the external selectivity filter in the Kv1.2 G329T mutant. The identified sevoflurane binding sites are located in critical regions involved in gating of Kv channels and related ion channels. Azisevoflurane has thus emerged as a new tool to discover inhaled anesthetic targets and binding sites and investigate contributions of these targets to general anesthesia.

???displayArticle.pubmedLink??? 28333442
???displayArticle.link??? ACS Chem Biol
???displayArticle.grants??? [+]

Species referenced: Xenopus laevis