Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-51285
Neurosci Lett 2015 Oct 21;607:59-65. doi: 10.1016/j.neulet.2015.09.027.
Show Gene links Show Anatomy links

Phosphorylation of heterogeneous nuclear ribonucleoprotein K at an extracellular signal-regulated kinase phosphorylation site promotes neurofilament-medium protein expression and axon outgrowth in Xenopus.

Hutchins EJ , Belrose JL , Szaro BG .


???displayArticle.abstract???
Post-transcriptional control of cytoskeletal genes fine-tunes the supply of structural materials to growing axons in response to extracellular cues. In Xenopus, heterogeneous nuclear ribonucleoprotein K (hnRNPK) plays a crucial role in the nuclear export and translation of multiple cytoskeletal-related mRNAs required for axon outgrowth, and as a substrate of multiple kinases, is thus a likely molecular target of cell signaling pathways regulating such outgrowth. To study the role of hnRNPK's phosphorylation by extracellular signal-regulated kinase (ERK) in Xenopus axon outgrowth, we identified the only ERK1 phosphorylation site on Xenopus hnRNPK (S257; homologous with S284 of human hnRNPK) using an in vitro phosphorylation assay and tested its function in vivo by expressing phosphomimetic (S257D) and phosphodeficient (S257A) forms of hnRNPK in Xenopus embryos. Although neither form altered hnRNPK nuclear export, only the phosphomimetic form significantly rescued both neurofilament protein expression and axon outgrowth from hnRNPK knockdown. This finding represents a previously unidentified function of phosphorylation at this phylogenetically conserved site and implicates hnRNPK as an intracellular molecular target of ERK-mediated signaling in axon outgrowth.

???displayArticle.pubmedLink??? 26409787
???displayArticle.link??? Neurosci Lett


Species referenced: Xenopus
Genes referenced: hnrnpk mapk1