Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-50593
BMC Neurosci 2015 Mar 05;16:8. doi: 10.1186/s12868-015-0148-4.
Show Gene links Show Anatomy links

Pharmacological characterisation of murine α4β1δ GABAA receptors expressed in Xenopus oocytes.

Villumsen IS , Wellendorph P , Smart TG .


???displayArticle.abstract???
BACKGROUND: GABAA receptor subunit composition has a profound effect on the receptor's physiological and pharmacological properties. The receptor β subunit is widely recognised for its importance in receptor assembly, trafficking and post-translational modifications, but its influence on extrasynaptic GABAA receptor function is less well understood. Here, we examine the pharmacological properties of a potentially native extrasynaptic GABAA receptor that incorporates the β1 subunit, specifically composed of α4β1δ and α4β1 subunits. RESULTS: GABA activated concentration-dependent responses at α4β1δ and α4β1 receptors with EC50 values in the nanomolar to micromolar range, respectively. The divalent cations Zn(2+) and Cu(2+), and the β1-selective inhibitor salicylidine salicylhydrazide (SCS), inhibited GABA-activated currents at α4β1δ receptors. Surprisingly the α4β1 receptor demonstrated biphasic sensitivity to Zn(2+) inhibition that may reflect variable subunit stoichiometries with differing sensitivity to Zn(2+). The neurosteroid tetrahydro-deoxycorticosterone (THDOC) significantly increased GABA-initiated responses in concentrations above 30 nM for α4β1δ receptors. CONCLUSIONS: With this study we report the first pharmacological characterisation of various GABAA receptor ligands acting at murine α4β1δ GABAA receptors, thereby improving our understanding of the molecular pharmacology of this receptor isoform. This study highlights some notable differences in the pharmacology of murine and human α4β1δ receptors. We consider the likelihood that the α4β1δ receptor may play a role as an extrasynaptic GABAA receptor in the nervous system.

???displayArticle.pubmedLink??? 25887256
???displayArticle.pmcLink??? PMC4359537
???displayArticle.link??? BMC Neurosci
???displayArticle.grants??? [+]

Species referenced: Xenopus laevis
Genes referenced: gabarap


???attribute.lit??? ???displayArticles.show???
References [+] :
Absalom, α4βδ GABA(A) receptors are high-affinity targets for γ-hydroxybutyric acid (GHB). 2012, Pubmed, Xenbase