Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-46400
Cell Mol Life Sci 2013 May 01;709:1653-61. doi: 10.1007/s00018-012-1225-9.
Show Gene links Show Anatomy links

Complex modulation of Ca(v)3.1 T-type calcium channel by nickel.

Nosal OV , Lyubanova OP , Naidenov VG , Shuba YM .


???displayArticle.abstract???
Nickel is considered to be a selective blocker of low-voltage-activated T-type calcium channel. Recently, the Ni(2+)-binding site with critical histidine-191 (H191) within the extracellular IS3-IS4 domain of the most Ni(2+)-sensitive Cav3.2 T-channel isoform has been identified. All calcium channels are postulated to also have intrapore-binding site limiting maximal current carried by permeating divalent cations (PDC) and determining the blockade by non-permeating ones. However, the contribution of the two sites to the overall Ni(2+) effect and its dependence on PDC remain uncertain. Here we compared Ni(2+) action on the wild-type "Ni(2+)-insensitive" Cav3.1w/t channel and Cav3.1Q172H mutant having glutamine (Q) equivalent to H191 of Cav3.2 replaced by histidine. Each channel was expressed in Xenopus oocytes, and Ni(2+) blockade of Ca(2+), Sr(2+), or Ba(2+) currents was assessed by electrophysiology. Inhibition of Cav3.1w/t by Ni(2+) conformed to two sites binding. Ni(2+) binding with high-affinity site (IC50 = 0.03-3 μM depending on PDC) produced maximal inhibition of 20-30% and was voltage-dependent, consistent with its location within the channel's pore. Most of the inhibition (70-80%) was produced by Ni(2+) binding with low-affinity site (IC50 = 240-700 μM). Q172H-mutation mainly affected low-affinity binding (IC50 = 120-160 μM). The IC50 of Ni(2+) binding with both sites in the Cav3.1w/t and Cav3.1Q172H was differentially modulated by PDC, suggesting a varying degree of competition of Ca(2+), Sr(2+), or Ba(2+) with Ni(2+). We conclude that differential Ni(2+)-sensitivity of T-channel subtypes is determined only by H-containing external binding sites, which, in the absence of Ni(2+), may be occupied by PDC, influencing in turn the channel's permeation.

???displayArticle.pubmedLink??? 23250353
???displayArticle.pmcLink??? PMC11113523
???displayArticle.link??? Cell Mol Life Sci


Species referenced: Xenopus
Genes referenced: cacna1g cav3.1 cav3.2 pdc

References [+] :
Babich, Block of CaV1.2 channels by Gd3+ reveals preopening transitions in the selectivity filter. 2007, Pubmed