Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-4196
J Biol Chem 2004 Mar 19;27912:11513-20. doi: 10.1074/jbc.M311920200.
Show Gene links Show Anatomy links

Evidence for up-regulation of the endogenous Na-K-2Cl co-transporter by molecular interactions with the anion exchanger tAE1 expressed in Xenopus oocyte.

Guizouarn H , Gabillat N , Borgese F .


???displayArticle.abstract???
Expression of trout anion exchanger 1 (tAE1) in Xenopus oocyte led to the stimulation of a Na(+)- and Cl(-)-dependent Rb influx. Functional features and pharmacological data strongly suggest that this Rb influx is mediated by the endogenous Na-K-2Cl (NKCC) co-transporter. The functional relationship between expression of tAE1 and activation of the NKCC co-transporter was investigated. Indeed, it was shown previously that tAE1 expressed in Xenopus oocyte induces a strong anion conductance which is correlated with an increased taurine permeability. Measurements of intracellular ion contents ruled out the involvement of any modification of known electrochemical parameters in NKCC co-transporter activation by tAE1. Furthermore, using chimera of tAE1 made with AE1 from other species unable to exhibit anion conductance led to the conclusion that there was no correlation between tAE1 anion conductance and NKCC co-transporter stimulation. Therefore, a possible molecular interaction between tAE1 and the NKCC co-transporter was investigated. Our results clearly show that NKCC activation is dependent upon the C-terminal part of tAE1. Chimeric constructions where tAE1 C-terminal part was substituted by the corresponding part of mouse AE1 abolished co-transporter activation. Moreover, steric encumbrance on the C-terminal end of tAE1 with a specific antibody or with a protein fusion also prevented the co-transporter activation. These data suggest a new role for some anion exchangers in controlling other transporter activity by molecular interactions.

???displayArticle.pubmedLink??? 14699110
???displayArticle.link??? J Biol Chem


Species referenced: Xenopus laevis
Genes referenced: slc4a1