Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-39584
Eur J Pharmacol 2009 Jun 24;6131-3:100-7. doi: 10.1016/j.ejphar.2009.04.036.
Show Gene links Show Anatomy links

Five different profiles of dihydropyridines in blocking T-type Ca(2+) channel subtypes (Ca(v)3.1 (alpha(1G)), Ca(v)3.2 (alpha(1H)), and Ca(v)3.3 (alpha(1I))) expressed in Xenopus oocytes.

Furukawa T , Nukada T , Namiki Y , Miyashita Y , Hatsuno K , Ueno Y , Yamakawa T , Isshiki T .


???displayArticle.abstract???
1,4-dihydropyridine (DHP) Ca(2+) antagonists have recently been shown to block T-type Ca(2+) channels, which may render favorable actions on cardiovascular systems. However, this evaluation remains to be done systematically for each T-type Ca(2+) channel subtype except for the Ca(v)3.1 (alpha(1G)) subtype. To address this issue at the molecular level, blocking effects of 14 kinds of DHPs (amlodipine, aranidipine, azelnidipine, barnidipine, benidipine, cilnidipine, efonidipine, felodipine, manidipine, nicardipine, nifedipine, nilvadipine, nimodipine, nitrendipine), which are clinically used for treatments of hypertension, on 3 subtypes of T-type Ca(2+) channels [Ca(v)3.2 (alpha(1H)), Ca(v)3.3 (alpha(1I)), and Ca(v)3.1 (alpha(1G))] were investigated in the Xenopus oocyte expression system using the two-microelectrode voltage-clamp technique. These 3 kinds (alpha(1H), alpha(1I) and alpha(1G)) of T-type channels were blocked by amlodipine, manidipine and nicardipine. On the other hand, azelnidipine, barnidipine, benidipine and efonidipine significantly blocked alpha(1H) and alpha(1G), but not alpha(1I) channels, while nilvadipine and nimodipine apparently blocked alpha(1H) and alpha(1I), but not alpha(1G) channels. Moreover, aranidipine blocked only alpha(1H) channels. By contrast, cilnidipine, felodipine, nifedipine and nitrendipine had little effects on these subtypes of T-type channels. The result indicates that the blockade of T-type Ca(2+) channels by derivatives of DHP Ca(2+) antagonist was selective for the channel subtype. Therefore, these selectivities of DHPs in blocking T-type Ca(2+) channel subtypes would provide useful pharmacological and clinical information on the mode of action of the drugs including side-effects and adverse effects.

???displayArticle.pubmedLink??? 19401195
???displayArticle.link??? Eur J Pharmacol


Species referenced: Xenopus
Genes referenced: cacna1g cacna1h cacna1i dhps dpys