Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-39219
J Neuroendocrinol 1989 Feb 01;11:65-9. doi: 10.1111/j.1365-2826.1989.tb00078.x.
Show Gene links Show Anatomy links

Modulation of Neuropeptide-lnduced Membrane Currents by Protein Kinase C in Xenopus Oocytes Injected with GH Pituitary Cell Poly(A) RNA.

Mahlmann S , Schwarz JR , Meyerhof W .


???displayArticle.abstract???
Abstract Protein kinase C was activated in Xenopus laevis oocytes by phorbol ester treatment and its effects on the inositol trisphosphate/Ca(2+) transmembrane signalling pathway analysed. Induction of the pathway was achieved by ligand stimulation of TRH receptors translated from GH(3) pituitary cell mRNA. In voltage-clamped oocytes bath application of peptide, injection of guanosine 5'-(3-O-thio) triphosphate (GTPgammaS), inositol trisphosphate or Ca(2+) all elicited inward membrane currents. Treatment of oocytes with tumour-promoting phorbol esters for 35 min almost completely abolished the ligand and GTPgammaS-induced responses. In contrast, phorbol ester treatment enhanced inositol trisphosphate-generated membrane currents. Ca(2+)-mediated responses remained unaffected by tumour promoters. The data indicate a dual role for protein kinase C in the modulation of transmembrane signalling: a feedback mechanism prevents phosphoinositide turnover whereas a feedforward reaction triggers the effect of intracellular inositol trisphosphate on the Ca(2+) release.

???displayArticle.pubmedLink??? 19210484
???displayArticle.link??? J Neuroendocrinol


Species referenced: Xenopus laevis
Genes referenced: trh