Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-35611
J Magn Reson 2007 Jan 01;1841:20-8. doi: 10.1016/j.jmr.2006.09.008.
Show Gene links Show Anatomy links

Anisotropic diffusion of metabolites in peripheral nerve using diffusion weighted magnetic resonance spectroscopy at ultra-high field.

Ellegood J , McKay RT , Hanstock CC , Beaulieu C .


???displayArticle.abstract???
Although the diffusivity and anisotropy of water has been investigated thoroughly in ordered axonal systems (i.e., nervous tissue), there have been very few studies on the directional dependence of diffusion of metabolites. In this study, the mean apparent diffusion coefficient (Trace/3 ADC) and fractional anisotropy (FA) values of the intracellular metabolites N-acetyl aspartate (NAA), creatine and phosphocreatine (tCr), choline (Cho), taurine (Tau), and glutamate and glutamine (Glx) were measured parallel and perpendicular to the length of excised frog sciatic nerve using a water suppressed, diffusion-weighted, spin-echo pulse sequence at 18.8T. The degree of anisotropy (FA) of NAA (0.41+/-0.09) was determined to be less than tCr (0.59+/-0.07) and Cho (0.61+/-0.11), which is consistent with previously reported human studies of white matter. In contrast, Glx diffusion was found to be almost isotropic with an FA value of 0.20+/-0.06. The differences of FA between the metabolites is most likely due to their differing micro-environments and could be beneficial as an indicator of compartment specific changes with disease, information not readily available with water diffusion.

???displayArticle.pubmedLink??? 17027305
???displayArticle.link??? J Magn Reson


Species referenced: Xenopus laevis
Genes referenced: mapt