Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-35272
Conf Proc IEEE Eng Med Biol Soc 2004 Jan 01;2004:3531-4. doi: 10.1109/IEMBS.2004.1403993.
Show Gene links Show Anatomy links

Sonoporation of cells for drug and gene delivery.

Pan H , Zhou Y , Sieling F , Shi J , Cui J , Deng C .


???displayArticle.abstract???
Recent studies demonstrate that ultrasound can be used to deliver compounds into viable cells for potential targeted drug delivery and non-viral gene transfection, revealing new, advantageous possibilities. The delivery is facilitated through sonoporation, the formation of temporary pores in the cell membrane induced by ultrasound. Our study focuses on the study of sonoporation mechanisms in order to achieve optimal delivery outcome such as high delivery efficiency and minimal cell death. Using voltage clamp techniques, we obtained real-time measurements of sonoporation of single Xenopus oocytes in the presence of Optison, an agent consisting of albumin-shelled C3F8 gas bubbles. Ultrasound increased the transmembrane current as a direct result of decreased membrane resistance due to pore formation. The ability to real time monitor sonoporation of cells provides a novel and necessary tool for us to study the dynamic sonoporation process and obtain optimal delivery parameters. We confirmed the delivery of compound into cells by using markers such as plasmid GFP.

???displayArticle.pubmedLink??? 17271052
???displayArticle.link??? Conf Proc IEEE Eng Med Biol Soc
???displayArticle.grants??? [+]

Species referenced: Xenopus
Genes referenced: gnas